scholarly journals A Framework of an Integrated Livestock Vehicle Trajectory Database Using Digital Tachograph Data

2021 ◽  
Vol 13 (5) ◽  
pp. 2694
Author(s):  
Heehyeon Jeong ◽  
Jungyeol Hong ◽  
Dongjoo Park

The outbreak of African swine fever virus has raised global concerns regarding epidemic livestock diseases. Therefore, various studies have attempted to prevent and monitor epidemic livestock diseases. Most of them have emphasized that integrated studies between the public health and transportation engineering are essential to prevent the livestock disease spread. However, it has been difficult to obtain big data related to the mobility of livestock-related vehicles. Thus, it is challenging to conduct research that comprehensively considers cargo vehicles’ movement carrying livestock and the spread of livestock infectious diseases. This study developed the framework for integrating the digital tachograph data (DTG) and trucks’ visit history of livestock facility data. The DTG data include commercial trucks’ coordinate information, but it excludes actual livestock-related vehicle trajectories such as freight types and facility visit history. Therefore, the integrated database we developed can be used as a significant resource for preventing the spread of livestock epidemics by pre-monitoring livestock transport vehicles’ movements. In future studies, epidemiological research on infectious diseases and livestock species will be able to conduct through the derived integrating database. Furthermore, the indicators of the spread of infectious diseases could be suggested based on both microscopic and macroscopic roadway networks to manage livestock epidemics.

2020 ◽  
Vol 64 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Mateusz Fila ◽  
Grzegorz Woźniakowski

AbstractAfrican swine fever (ASF) is an acute viral haemorrhagic disease of pigs and wild boars. It presents a serious threat to pig production worldwide, and since 2007, ASF outbreaks have been recorded in the Caucasus, Eastern Europe, and the Baltic States. In 2014, the disease was detected in Poland. ASF is on the list of notifiable diseases of the World Organisation for Animal Health (OIE). Due to the lack of an available vaccine and treatment, the countermeasures against the disease consist in early detection of the virus in the pig population and control of its spread through the elimination of herds affected by disease outbreaks. Knowledge of the potential vectors of the virus and its persistence in the environment is crucial to prevent further disease spread and to understand the new epidemiology for how it compares to the previous experience in Spain gathered in the 1970s and 1980s.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Clara M. Yona ◽  
Merijn Vanhee ◽  
Edgar Simulundu ◽  
Mariam Makange ◽  
Hans J. Nauwynck ◽  
...  

Abstract Background African swine fever (ASF) is a highly fatal viral hemorrhagic disease of domestic pigs that threatens livelihoods and food security. In Africa, ASF virus (ASFV) circulates in sylvatic (transmission between warthogs and soft argasid ticks) and domestic (transmission between domestic pigs) cycles, with outbreaks resulting from ASFV spill-over from sylvatic cycle. A number of outbreaks were reported in different parts of Tanzania between 2015 and 2017. The present study investigated ASFV transmission patterns through viral DNA sequencing and phylogenetic analysis. A total of 3120 tissue samples were collected from 2396 domestic pigs during outbreaks at different locations in Tanzania between 2015 and 2017. Partial sequencing of the B646L (p72) gene was conducted for diagnostic confirmation and molecular characterization of ASFV. Phylogenetic analysis to study the relatedness of current ASFV with those that caused previous outbreaks in Tanzania and representatives of all known 24 ASFV was performed using the Maximum Composite Likelihood model with 1000 bootstrap replications in MEGA 6.0. Results ASFV was confirmed to cause disease in sampled domestic pigs. ASFV genotypes II, IX, and X were detected from reported outbreaks in 2015–2017. The current ASFV isolates were similar to those recently documented in the previous studies in Tanzania. The similarities of these isolates suggests for continuous circulation of ASFV with virus maintenance within the domestic pigs. Conclusions Genetic analysis confirmed the circulation of ASFV genotypes II, IX, and X by partial B646L (p72) gene sequencing. The similarities of current isolates to previously isolated Tanzanian isolates and pattern of disease spread suggest for continuous circulation of ASF with virus’ maintenance in the domestic pigs. Although certain viral genotypes seem to be geographically restricted into certain zones within Tanzania, genotype II seems to expand its geographical range northwards with the likelihood of spreading to other states of the East African Community. The spread of ASFV is due to breach of quarantine and transportation of infected pigs via major highways. Appropriate control measures including zoosanitary measures and quarantine enforcement are recommended to prevent ASF domestic circulation in Tanzania.


Author(s):  
Rohani Abdul Rahim ◽  
Nor Anita Abdullah

The deliberate use of biological agents and the emergence of infectious diseases which can produce harm to human health and give effects to the public health and security are well recognised. A few years back, an attack of biological agents would be the most unthinkable situation to happen. However, the threat of bioterrorism is real and it is growing. It continues to be a major challenge today and the possibility of bioterrorism is undeniable as it is increasingly defined globally as ‘not if, but when’. Therefore, this paper attempts to give a brief explanation on the threat of bioterrorism as to the emergence of infectious diseases and the legal history of international law on bioterrorism. The main objective of this paper is to find out the need for bioterrorism law in Malaysian i.e. a legal approach. The study is a social legal research, which uses a qualitative approach. Thus, due to lack of materials and publications in Malaysia, in order to achieve the objectives, the methodology used was based on a semi structured interviews conducted with three respected experts in public health and security to explore the real situation in Malaysia. The authors found out that the finding of this study had established that an outbreak of infectious diseases can now be viewed as a threat that may result to bioterrorism if there is no preparation to handle it. Keywords: Bioterrorism, biological agents, infectious diseases, legal and preparedness


Author(s):  
Clara M. Yona ◽  
Merijn Vanhee ◽  
Edgar Simulundu ◽  
Mariam Makange ◽  
Hans Nauwynck ◽  
...  

Abstract Background African swine fever (ASF) is a highly fatal viral hemorrhagic disease of domestic pigs that threatens livelihoods and food security. In Africa, ASF virus (ASFV) circulates in sylvatic (transmission between warthogs and soft argasid ticks) and domestic (transmission between domestic pigs) cycles, with outbreaks resulting from ASFV spill-over from sylvatic cycle. A number of outbreaks were reported in different parts of Tanzania between 2015 and 2017. The present study investigated ASFV transmission patterns through virus genotyping and phylogenetic analysis. Results ASFV was confirmed to cause outbreaks in sampled domestic pigs. ASFV genotypes II, IX, and X were detected from reported outbreaks in 2015-2017. The current ASFV isolates were similar to those recently documented in the previous studies in Tanzania. The similarities of these isolates suggests for continuous circulation of ASFV with virus maintenance within the domestic pigs. Methods A total of 3120 tissue samples were collected from 2396 domestic pigs during outbreaks at different locations in Tanzania between 2015 and 2017. Partial sequencing of the B646L (p72) gene was conducted for diagnostic confirmation and molecular characterization of ASFV. Phylogenetic analysis to study the relatedness of current ASFV with those that caused previous outbreaks in Tanzania and representatives of all known 24 ASFV was performed using the Maximum Composite Likelihood model with 1000 bootstrap replications in MEGA 6.0. Conclusions Genetic analysis confirmed the circulation of ASFV genotypes II, IX, and X by partial B646L (p72) gene sequencing. The similarities of current isolates to previously isolated Tanzanian isolates and pattern of disease spread suggest for continuous circulation of ASF with virus’ maintenance in the domestic pigs. Although certain viral genotypes seem to be geographically restricted into certain zones within Tanzania, genotype II seems to expand its geographical range northwards with the likelihood of spreading to other states of the East African Community. The spread of ASFV is due to breach of quarantine and transportation of affected pigs via major highways. Appropriate control measures including zoosanitary measures and quarantine measures adherence are recommended to prevent ASF domestic circulation in Tanzania.


Viruses ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 852 ◽  
Author(s):  
Sánchez-Cordón ◽  
Nunez ◽  
Neimanis ◽  
Wikström-Lassa ◽  
Montoya ◽  
...  

After the re-introduction of African swine fever virus (ASFV) genotype II isolates into Georgia in 2007, the disease spread from Eastern to Western Europe and then jumped first up to Mongolian borders and later into China in August 2018, spreading out of control and reaching different countries of Southeast Asia in 2019. From the initial incursion, along with domestic pigs, wild boar displayed a high susceptibility to ASFV and disease development. The disease established self-sustaining cycles within the wild boar population, a key fact that helped its spread and that pointed to the wild boar population as a substantial reservoir in Europe and probably also in Asia, which may hinder eradication and serve as the source for further geographic expansion. The present review gathers the most relevant information available regarding infection dynamics, disease pathogenesis and immune response that experimental infections with different ASFV isolates belonging to genotype I and II in wild boar and feral pigs have generated. Knowledge gaps in areas such as disease pathogenesis and immune response highlights the importance of focusing future studies on unravelling the early mechanisms of virus-cell interaction and innate and/or adaptive immune responses, knowledge that will contribute to the development of efficacious treatments/vaccines against ASFV.


2020 ◽  
Vol 65 (No. 4) ◽  
pp. 143-158 ◽  
Author(s):  
MP Frant ◽  
M Lyjak ◽  
L Bocian ◽  
A Barszcz ◽  
K Niemczuk ◽  
...  

African swine fever (ASF) was first described in 1921 in Kenya. The latest epidemic of ASF started in 2007 in Georgia. The virus was introduced to Poland in 2014. Since the beginning of the epidemics, the National Veterinary Research Institute in Pulawy (NVRI) has been testing wild boar samples from restricted areas and other parts of Poland to conduct passive and active surveillance for ASFV in these groups of animals. The aim of this study was to summarise the last two years of the ASF epidemiological status in Poland and the attempt to find disease patterns in the wild boar population. The period between 2017 and 2018 brought a massive number of new ASF cases in Poland. The number of ASF-positive wild boars jumped from 91 in 2016 to 1 140 in 2017 (approximately a 12 × increase), and 2018 was even worse, with the disease affecting 4 083 animals (2 435 cases; one case could even be 10 animals or more if they are found in one place next to each other). The percentage of positive wild boars found dead (passive surveillance) in the restricted area increased in 2018 to 73.1% from 70.8% in 2017. The chance of obtaining positive results in this group was six times higher in December and 4.5 times higher in January than in August and September. The percentage of positive wild boars detected through active surveillance reached 1.5% in 2018. The data suggested that, not only in Poland, but also in other ASF-affected countries, during the epizootic stage of the disease spread the most important measure is an effective passive surveillance of dead wild boars especially, in the winter season rather than in the summer.


2020 ◽  
Author(s):  
Clara M. Yona ◽  
Merijn Vanhee ◽  
Edgar Simulundu ◽  
Mariam Makange ◽  
Hans Nauwynck ◽  
...  

Abstract BackgroundAfrican swine fever (ASF) is a highly fatal viral hemorrhagic disease of domestic pigs that threatens livelihoods and food security. In Africa, ASF virus (ASFV) circulates in sylvatic (transmission between warthogs and soft argasid ticks) and domestic (transmission between domestic pigs) cycles, with outbreaks resulting from ASFV spill-over from sylvatic cycle. A number of outbreaks were reported in different parts of Tanzania between 2015 and 2017. The present study investigated ASFV transmission patterns through viral DNA sequencing and phylogenetic analysis.ResultsASFV was confirmed to cause disease in sampled domestic pigs. ASFV genotypes II, IX, and X were detected from reported outbreaks in 2015-2017. The current ASFV isolates were similar to those recently documented in the previous studies in Tanzania. The similarities of these isolates suggests for continuous circulation of ASFV with virus maintenance within the domestic pigs.MethodsA total of 3120 tissue samples were collected from 2396 domestic pigs during outbreaks at different locations in Tanzania between 2015 and 2017. Partial sequencing of the B646L (p72) gene was conducted for diagnostic confirmation and molecular characterization of ASFV. Phylogenetic analysis to study the relatedness of current ASFV with those that caused previous outbreaks in Tanzania and representatives of all known 24 ASFV was performed using the Maximum Composite Likelihood model with 1000 bootstrap replications in MEGA 6.0.ConclusionsGenetic analysis confirmed the circulation of ASFV genotypes II, IX, and X by partial B646L (p72) gene sequencing. The similarities of current isolates to previously isolated Tanzanian isolates and pattern of disease spread suggest for continuous circulation of ASF with virus’ maintenance in the domestic pigs. Although certain viral genotypes seem to be geographically restricted into certain zones within Tanzania, genotype II seems to expand its geographical range northwards with the likelihood of spreading to other states of the East African Community. The spread of ASFV is due to breach of quarantine and transportation of infected pigs via major highways. Appropriate control measures including zoosanitary measures and quarantine enforcement are recommended to prevent ASF domestic circulation in Tanzania.


Author(s):  
Gordon Luikart ◽  
Vanessa Ezenwa ◽  
Marty Kardos ◽  
P. White ◽  
Paul Cross

Infectious diseases are a serious threat to the viability of wildlife populations worldwide, including those in national parks and other protected areas where agricultural operations, development, and recreation are degrading and fragmenting habitat and increasing the potential for interactions between wildlife, domestic animals, and humans. The spread of infectious diseases and parasites is of particular concern in the greater Yellowstone area, which supports world-renowned herds of ungulates that provide significant visitor enjoyment and benefits to local economies through guiding and sport hunting. The high diversity, density, and co-mingling rates of ungulates in this area could facilitate the rapid emergence and spread of infectious diseases such as brucellosis, chronic wasting disease, and Johne's disease, with escalating disease threats to livestock and people along the public/private land interface.


2020 ◽  
Vol 36 (6) ◽  
Author(s):  
Cláudio Tadeu Daniel-Ribeiro ◽  
Marli Maria Lima

Abstract: This article examines the story of Louis Pasteur from the point of view of a classic movie presented at the Weekly Seminars of the “Oswaldo Cruz Institute”, at the end of the 2017 activities. Although very old, the movie The Story of Louis Pasteur (Warner Bros., 1936) inspired spectators and gave rise to an energetic debate that led the authors to decide for publishing the comments of the Seminar Coordinator, the guest commentator and the audience. The movie communicates to the public the legacy of one of the greatest precursors of the public health history using also fictional characters. The article presents the reliable passages in Pasteur’s biography and the fictional ones, without disrespecting the production of the creators of cinematographic work. The major merit of the movie, one of the first steps towards the policy of scientific diffusion, is to disclose the importance of vaccines and hand hygiene to prevent infectious diseases. The authors argue that the film-maker impeccably captured the scientist’s tenacity in the relentless search for discoveries and Pasteur’s idea that only persistent work can lead to rewarding results, remembering that the context created by previous researchers enabled Pasteur to establish new paradigms. Finally, the authors cite movie passages illustrating realities that are still in force: (i) the inertial resistance of science to new paradigms, illustrated by the medical-scientific community opposing to simple practices proposition, such as washing hands and boiling instruments, and (ii) the excessive confidence, and even arrogance, of some specialists, instead of serenity and humility that arise from committed study and accumulated knowledge.


2021 ◽  
Author(s):  
Sasidhar Malladi ◽  
Amos Ssematimba ◽  
Peter J. Bonney ◽  
Kaitlyn M. St. Charles ◽  
Timothy Boyer ◽  
...  

Abstract Background: African swine fever (ASF) is a highly contagious and devastating pig disease that has caused extensive global economic losses. Understanding ASF virus (ASFV) transmission dynamics within a herd is necessary in order to prepare for and respond to an outbreak in the United States. Although the transmission parameters for the highly virulent ASF strains have been estimated in several articles, there are relatively few studies focused on moderately virulent strains. Using an approximate Bayesian computation algorithm in conjunction with Monte Carlo simulation, we have estimated the adequate contact rate for moderately virulent ASFV strains and determined the statistical distributions for the durations of mild and severe clinical signs using individual, pig-level data. A discrete individual based disease transmission model was then used to estimate the time to detect ASF infection based on increased mild clinical signs, severe clinical signs, or daily mortality. Results: Our results indicate that it may take two weeks or longer to detect ASF in a finisher swine herd via mild clinical signs or increased mortality beyond levels expected in routine production. A key factor contributing to the extended time to detect ASF in a herd is the fairly long latently infected period for an individual pig (mean 4.5, 95% P.I., 2.4 - 7.2 days). Conclusion: These transmission model parameter estimates and estimated time to detection via clinical signs provide valuable information that can be used not only to support emergency preparedness but also to inform other simulation models of evaluating regional disease spread.


Sign in / Sign up

Export Citation Format

Share Document