scholarly journals Synthesis of β-Ca2P2O7 as an Adsorbent for the Removal of Heavy Metals from Water

2021 ◽  
Vol 13 (14) ◽  
pp. 7859
Author(s):  
Diana Griesiute ◽  
Justina Gaidukevic ◽  
Aleksej Zarkov ◽  
Aivaras Kareiva

In the present work, beta-calcium pyrophosphate (β-Ca2P2O7) was investigated as a potential adsorbent for the removal of heavy metal ions from water. Single-phase β-Ca2P2O7 powders were synthesized by a simple, scalable and cost-effective wet precipitation method followed by annealing at 800 °C, which was employed for the conversion of as-precipitated brushite (CaHPO4∙2H2O) to β-Ca2P2O7. Physicochemical properties of the sorbent were characterized by means of X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA/DSC), scanning electron microscopy (SEM) and low temperature adsorption–desorption of nitrogen (BET method). The synthesized powders consisted of porous plate-like particles with micrometer dimensions. Specific surface area calculated by the BET method was found to be 7 m2 g−1. For the estimation of sorption properties, the aqueous model solutions containing different metal ions (Al3+, Cd2+, Co2+, Cu2+, Fe2+, Mn2+, Ni2+, Pb2+, Sn2+, Sr2+ and Zn2+) were used. The adsorption test revealed that β-Ca2P2O7 demonstrates the highest adsorption capacity for Pb2+ and Sn2+ ions, while the lowest capacity was observed towards Sr2+, Ni2+ and Co2+ ions. The optimal pH value for the removal of Pb2+ ions was determined to be 2, which is also related to the low solubility of β-Ca2P2O7 at this pH. The adsorption capacity towards Pb2+ ions was calculated as high as 120 mg g−1.

2018 ◽  
Vol 36 (7-8) ◽  
pp. 1456-1469 ◽  
Author(s):  
Fang Liu ◽  
Kanggen Zhou ◽  
Quanzhou Chen ◽  
Aihe Wang ◽  
Wei Chen

The magnetic ferrites were synthesized at ambient temperature through the precipitation method in aqueous solution at varying pH values and were used as novel adsorbents for heavy metal-containing wastewater treatment. The magnetic ferrites were applied for the removal of Cd(II) ion from wastewater. The synthesized magnetic ferrites were characterized by settling velocity, X-ray diffraction, scanning electron microscopy, laser particles size analyzer, and vibrating sample magnetometer. The effects of pH value and contact time on the adsorption process were investigated. The magnetic ferrites had a saturation magnetization value of 82.30 emu/g and a settling velocity of 2%, indicating easy separation from aqueous solution under magnetic field. The adsorption of Cd(II) onto the magnetic ferrites followed the pseudo-second-order kinetics and the Langmuir isotherm model. The most suitable pH condition for the synthesis of magnetic ferrite with optimal Cd(II) adsorption capacity was 9.0, and a maximum adsorption capacity of 160.91 mg/g for Cd(II) ions can be achieved. Based on the cost analysis, the magnetic ferrite was a cost-effective adsorbent for Cd-containing wastewater treatment.


2013 ◽  
Vol 789 ◽  
pp. 176-179 ◽  
Author(s):  
Eny Kusrini ◽  
Nofrijon Sofyan ◽  
Dwi Marta Nurjaya ◽  
Santoso Santoso ◽  
Dewi Tristantini

Hydroxyapatite/chitosan (HApC) composite has been prepared by precipitation method and used for removal of heavy metals (Cr6+, Zn2+and Cd2+) from aqueous solution. The HAp and 3H7C composite with HAp:chitosan ratio of 3:7 (wt%) were characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy-energy dispersive X-ray spectroscopy. The SEM results showed that HAp is spherical-shaped and crystalline, while chitosan has a flat structure. SEM micrograph of 3H7C composite reveals crystalline of HAp uniformly spread over the surface of chitosan. The crystal structure of HAp is maintained in 3H7C composite. Chitosan affects the adsorption capacity of HAp for heavy metal ions; it binds the metal ions as well as HAp. The kinetic data was best described by the pseudo-second order. Surface adsorption and intraparticle diffusion take place in the mechanism of adsorption process. The binding of HAp powder with chitosan made the capability of composite to removal of Cr6+, Zn2+and Cd2+from aqueous solution effective. The order of removal efficiency (Cr6+> Cd2+> Zn2+) was observed.


2020 ◽  
Vol 82 (5) ◽  
pp. 984-997
Author(s):  
Tatyana Kouznetsova ◽  
Andrei Ivanets ◽  
Vladimir Prozorovich ◽  
Ahmad Hosseini-Bandegharaei ◽  
Hai Nguyen Tran ◽  
...  

Abstract The research aimed to develop a novel mesoporous aluminosilicate/zeolite composite by the template co-precipitation method. The effect of aluminosilicate (AlSi) and zeolite (NaY) on the basic properties and adsorption capacity of the resultant composite was conducted at different mass ratios of AlSi/NaY (i.e., 5/90, 10/80, 15/85, 20/80, and 50/50). The adsorption characteristics of such composite and its feedstock materials (i.e., aluminosilicates and zeolite) towards radioactive Sr2+ ions and toxic metals (Cu2+ and Pb2+ ions) in aqueous solutions were investigated. Results indicated that BET surface area (SBET), total pore volume (VTotal), and mesopore volume (VMeso) of prepared materials followed the decreasing order: aluminosilicate (890 m2/g, 0.680 cm3/g, and 0.644 cm3/g) > zeolite (623 m2/g, 0.352 cm3/g, and 0.111 cm3/g) > AlSi/NaY (20/80) composite (370 m2/g, 0.254 cm3/g, and 0.154 cm3/g, respectively). The Langmuir maximum adsorption capacity (Qm) of metal ions (Sr2+, Cu2+, and Pb2+) in single-component solution was 260 mg/g, 220 mg/g, and 161 mg/g (for zeolite), 153 mg/g, 37.9 mg/g, and 66.5 mg/g (for aluminosilicate), and 186 mg/g, 140 mg/g, and 77.8 mg/g for (AlSi/NaY (20/80) composite), respectively. Ion exchange was regarded as a domain adsorption mechanism of metal ions in solution by zeolite; meanwhile, inner-surface complexation was domain one for aluminosilicate. Ion exchange and inner-surface complexation might be mainly responsible for adsorbing metal ions onto the AlSi/NaY composite. Pore-filling mechanism was a less important contributor during the adsorption process. The results of competitive adsorption under binary-components (Cu2+ and Sr2+) and ternary-components (Cu2+, Pb2+, and Sr2) demonstrated that the removal efficacy of target metals by the aluminosilicate, zeolite, and their composite remarkably decreased. The synthesized AlSi/NaY composite might serve as a promising adsorbent for real water treatment.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1630
Author(s):  
Vesna Marjanovic ◽  
Aleksandra Peric-Grujic ◽  
Mirjana Ristic ◽  
Aleksandar Marinkovic ◽  
Radmila Markovic ◽  
...  

Hybrid adsorbent, based on the cross-linked copolymer impregnated with hydrous iron oxide, was applied for the first time for Se(VI) adsorption from water. The influence of the initial solution pH, selenate concentration and contact time to adsorption capacity was investigated. Adsorbent regeneration was explored using a full factorial experimental design in order to optimize the volume, initial pH value and concentration of the applied NaCl solution as a reagent. Equilibrium state was described using the Langmuir model, while kinetics fitted the pseudo-first order. The maximum adsorption capacity was found to be 28.8 mg/g. Desorption efficiency increased up to 70%, and became statistically significant with the reagent concentration and pH increase, while the applied solution volume was found to be insignificant in the investigated range. Based on the results obtained, pH influence to the adsorption capacity, desorption efficiency, Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analysis of loaded adsorbent, it was concluded that the outer- and inner-sphere complexation are mechanisms responsible for Se(VI) separation from water. In addition to the experiments with synthetic solutions, the adsorbent performances in drinking water samples were explored, showing the purification efficiency up to 25%, depending on the initial Se(VI) concentration and water pH. Determined sorption capacity of the cross-linked copolymer impregnated with hydrous iron oxide and its ability for regeneration, candidate this material for further research, as a promising anionic species sorbent.


Inorganics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 40 ◽  
Author(s):  
Lisandra de Castro Alves ◽  
Susana Yáñez-Vilar ◽  
Yolanda Piñeiro-Redondo ◽  
José Rivas

This study reports the ability of magnetic alginate activated carbon (MAAC) beads to remove Cd(II), Hg(II), and Ni(II) from water in a mono-metal and ternary system. The adsorption capacity of the MAAC beads was highest in the mono-metal system. The removal efficiency of such metal ions falls in the range of 20–80% and it followed the order Cd(II) > Ni(II) > Hg(II). The model that best fitted in the ternary system was the Freundlich isotherm, while in the mono-system it was the Langmuir isotherm. The maximum Cd(II), Hg(II), and Ni(II) adsorption capacities calculated from the Freundlich isotherm in the mono-metal system were 7.09, 5.08, and 4.82 (mg/g) (mg/L)1/n, respectively. Lower adsorption capacity was observed in the ternary system due to the competition of metal ions for available adsorption sites. Desorption and reusability experiments demonstrated the MAAC beads could be used for at least five consecutive adsorption/desorption cycles. These findings suggest the practical use of the MAAC beads as efficient adsorbent for the removal of heavy metals from wastewater.


2012 ◽  
Vol 724 ◽  
pp. 472-475
Author(s):  
Xuan Liang ◽  
Xue Gang Luo ◽  
Xiao Yan Lin ◽  
Qiang Mei

Low cost industrial and agricultural by-products are promising materials for water pollution treatment such as removal of heavy metals. This work deals with removal of silver ions from solutions using expanded rice husk (ERH), nature diatomite (ND) and nature bentonite (NB). Firstly the influence of pH value of the solution on adsorption capacity for silver ions was studied, and then the effect of initial silver concentration on adsorbents adsorption capacity was investigated. The silver ions removal percentage increases with initial pH and achieves a maximum value of nearly 94% at pH= 5.0 ± 0.5 for ERH. The maximum adsorption capacity is 18.6 mg/g for ERH.


2020 ◽  
Author(s):  
Faizan Ahmad ◽  
Sadaf Zaidi

The production of large quantities of agro/food wastes from food processing industries and the release of pollutants in the form of heavy metals from various metallurgical industries are the grave problems of the society as well as serious threats to the environment. It is estimated that approximately one–third of all food that is produced goes to waste, meaning thereby that nearly 1.3 billion tonnes of agro/food wastes are generated per year. This readily available and large amount waste can be utilized for the removal of toxic metals obtained from metallurgical industries by converting it into the adsorbents. For example, mango peel showed adsorption capacity of 68.92 mg/g in removing cadmium II ions. Similarly, coconut waste showed a higher adsorption capacity of 285 and 263 mg/g in removing cadmium and lead ion, respectively. Biosorption and bioaccumulation are recommended as novel, efficient, eco-friendly, and less costly alternative technologies over the conventional methods such as ion exchange, chemical precipitation, and membrane filtration, etc. for the removal of toxic metal ions. Because of the presence of metal-binding functional groups, the industrial by-products, agro-wastes and microbial biomass are considered as the potential biosorbents. Thus they can be used for the removal of toxic metal ions. This chapter highlights the available information and methods on utilizing the agro/food waste for the eradication of toxic and heavy metal ions. Furthermore, this chapter also focuses on the sorption mechanisms of different adsorbents as well as their adsorbing capacities.


2020 ◽  
Vol 4 (2) ◽  
pp. 1-5
Author(s):  
Al Bazedi GA

Nowadays, undisputable environmental pollution requests endeavors to treat wastewater, particularly containing heavy metal, where wastewater treatment technologies are improving hastily. Hydroxyapatite with micro-porous structure and the large surface area turns into an intense research topic as of its high adsorption capacity. Environmentally friendly Hydroxyapatite powder with the large specific surface is a promising cost-effective precipitation method, for the removal of heavy metals (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) from wastewater. Different studies have revealed the efficient removal of all metals using hydroxyapatite or by modified HA using zeolite or chitosan. The increase of Ca2+ ions content in the treated water suggests an ion exchange mechanism


2011 ◽  
Vol 236-238 ◽  
pp. 2523-2528
Author(s):  
Shan Shan Cheng ◽  
Chao Hua Zhang ◽  
Xi Hong Yang ◽  
Wan Cui Xie

TheN,O-carboxymethyl-chitosan (N,O-CMC) was used to investigate the adsorptions of two metals of Cd(Ⅱ) and Pb(Ⅱ) ions in an mixed aqueous solution. The effects on adsorption capacities such as pH value, temperature, adsorbent dose and initial metal ion concentrations were investigated, and the dialysis method was applied to separate the materials after adsorption. The results revealed that the better adsorption ofN,O-CMC for Cd(Ⅱ) and Pb(Ⅱ) ions at the pH 7-8; the effect of temperature on the adsorption was not significant; the absorption of Cd(Ⅱ) and Pb(Ⅱ) ions was enhanced with the increase ofN,O-CMC amount; the adsorption capacity increasesed with the addition of the concentration of initial metal ions in the aqueous phase. The adsorption of Pb(Ⅱ) ion in Cd-Pb mixed solution on theN,O-CMC was well followed as the Langmuir isotherm equation under the concentration range studied, and Cd(Ⅱ) ion was corresponding to Langmuir adsorption equation in 100-200 mg/L and 200-500 mg/L, respectively. Conclusion:N,O-CMC was suitable for adsorbent to removal Cd(Ⅱ) and Pb(Ⅱ) ions, but it can selectively adsorption ions from the mixed solution, the adsorption capacity (Qm) for two metal ions was as follows: Pb(Ⅱ) > Cd(Ⅱ).


2014 ◽  
Vol 71 (5) ◽  
Author(s):  
Layth Imad Abd Ali ◽  
Wan Aini Wan Ibrahima ◽  
Azli Sulaiman ◽  
Mohd Marsin Sanagi

In the present study, Fe3O4 magnetic nanoparticles (MNPs) synthesized in-housed using co-precipitation method was applied for the treatment of aqueous solutions contaminated by Ni(II) ions. Experimental results indicated that at 25ºC, the optimum pH value for Ni(II) removal was pH 6.0 and an adsorbent dose of 60.0 mg.  The adsorption capacity of Fe3O4 nanoparticles for Ni(II) is 20.54 mg g−1. Adsorption kinetic rates were found to be fast; total equilibrium was achieved after 180 min. Kinetic experimental data fitted very well the pseudo-second order equation and the value of adsorption rate constants was calculated to be 0.004 and 0.0008 g mg−1 min at 5 and 40 mg L−1 initial Ni(II) concentrations, respectively. The equilibrium isotherms were evaluated in terms of maximum adsorption capacity and adsorption affinity by the application of Langmuir and Freundlich equations. The maximum monolayer capacity obtained from the Langmuir isotherm was 24.57 mg g−1 for Ni(II). Results indicate that the Langmuir model fits adsorption isotherm data better than the Freundlich model.


Sign in / Sign up

Export Citation Format

Share Document