scholarly journals A New Process for the Recovery of Ammonia from Ammoniated High-Salinity Brine

2021 ◽  
Vol 13 (18) ◽  
pp. 10014
Author(s):  
Ameera F. Mohammad ◽  
Ali H. Al-Marzouqi ◽  
Muftah H. El-Naas ◽  
Bart Van der Bruggen ◽  
Mohamed H. Al-Marzouqi

This paper describes a new method for the recovery of high-concentration ammonia from water in the form of ammonium chloride, ammonium hydroxide and ammonium carbonate. The method was applied to the Solvay process, in which sodium bicarbonate is produced through the reaction of ammoniated brine and CO2 gas. The Solvay effluent contains ammonia in the form of soluble ammonium chloride. The proposed method is based on the recovery of ammonia using a high-alkalinity reactant, calcium oxide (CaO), in a closed electrocoagulation cell operating at a specific current density. The recovered ammonia is collected as a gas within a closed cell containing deionized (DI) water at room temperature. Afterwards, the collected solution (DI water–NH3 gas) is concentrated through a separate process, and is then reused in the Solvay process and other applications. The electrocoagulation process is applied to the treatment cell using aluminum electrodes and a current density of 5–15 mA/cm2. After 7 h of treatment using the electrocoagulation cell, a high reduction of the ammonia concentration—99%—was realized after ~9 h of the electrochemical treatment. The initial ammonia concentration in a Solvay effluent of 13,700 mg/L N was decreased to 190 mg/L N. Furthermore, an ammonia recovery of 77.1% in the form of ammonium hydroxide was achieved. Generally, this process, which starts at room temperature, can result in an energy reduction of 80%—from 7.8 to 2.3 kWh/kg NH3—compared to conventional processes, which entail heating the Solvay effluents to 160 °C. The proposed system and method were found to be suitable for the recovery of ammonia from ammoniated water, and can be utilized for the treatment of landfill leachate, and municipal and industrial wastewater.

2012 ◽  
Vol 610-613 ◽  
pp. 1760-1763
Author(s):  
Li Xu ◽  
Xue Wu ◽  
Ming Fen Niu ◽  
Si Li ◽  
Hong Jing Jiao ◽  
...  

The purpose of this paper is to obtain a start-up of short-cut nitrification systems to treat wastewater with high concentration of nitrogen and phosphorus under laboratory conditions. By starting the nitrification system at room temperature we can achieve the effective accumulation of nitrifying bacteria. Then by increasing experimental temperature and pH, and increasing the concentration of nitrogen and phosphorus in influent, to inhibit the growth of NOB in the systems and promote the accumulation of AOB. So we can make the effluent have a higher concentration of NO2--N. In the stable operation stage we can constantly improve ammonia concentration in the influent, to observe the stability of the each indicators of effluent. This experiment showed that the wastewater with high concentration of nitrogen and phosphorus can better promote the accumulation of AOB, to achieve the effect of short-range nitrification.


1996 ◽  
Vol 422 ◽  
Author(s):  
Chi Sheng ◽  
Yongming Cai ◽  
Dawei Gong ◽  
Darning Huang ◽  
Xiaohan Liu ◽  
...  

AbstractIt is found that Er could only be deposited on a Si cathode by electrolysis of near neutral ErCl3 electrolyte with a large current density. The deposited Er hydrolytic layer reacts with Si at 1200 °C to form the activated Er centers that emit a 1.533 μm photoluminescence peak at room temperature. By applying this process to porous Si, an apparent doping concentration of Er larger than 1019/cm3 in the whole porous Si layer and a strong PL intensity with little temperature quenching are achieved.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qianqian Sheng ◽  
Min Song ◽  
Zunling Zhu ◽  
Fuliang Cao

AbstractCarpinus betulus and Carpinus putoensis are precious species in the world. Studies on the ecosystem function of the two species are rare. This study investigated the physiological and biochemical responses of C. betulus and C. putoensis to NO2 stress and their natural recovery. C. betulus and C. putoensis seedlings underwent fumigation with 12.0 mg/m3 NO2 for 0, 1, 6, 12, 24, 48, and 72 h, respectively. Then, the plants were allowed to recover at room temperature for 30 d. Physiological and biochemical changes in the leaves were compared between the two species. In terms of peroxidase (POD) activity, the damage response of C. betulus under NO2 stress appeared later than that of C. putoensis. The soluble protein content of C. betulus was noticeably higher than that of C. putoensis, and C. betulus exhibited more stable membrane lipoperoxidation. The tendency of the changes in nitrate reductase of C. betulus was less noticeable than that of C. putoensis. The variation amplitudes of N, K, Mg, Zn and Mn in the leaves of C. putoensis were greater than those of C. betulus. C. putoensis showed more sensitive metabolisms in response to NO2 stress compared with C. betulus. High-concentration NO2 caused damage to C. betulus and C. putoensis was reversible, and both species returned to normal growth via their own metabolism after 30-d recovery. The results of this study may provide useful reference data for quantitative assessment of the ecosystem function of C. betulus and C. putoensis and for their scientific application in urban greening.


Antioxidants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Elena Forte ◽  
Sergey A. Siletsky ◽  
Vitaliy B. Borisov

Interaction of two redox enzymes of Escherichia coli, cytochrome bo3 and cytochrome bd-I, with ammonium sulfate/ammonia at pH 7.0 and 8.3 was studied using high-resolution respirometry and absorption spectroscopy. At pH 7.0, the oxygen reductase activity of none of the enzymes is affected by the ligand. At pH 8.3, cytochrome bo3 is inhibited by the ligand, with 40% maximum inhibition at 100 mM (NH4)2SO4. In contrast, the activity of cytochrome bd-I at pH 8.3 increases with increasing the ligand concentration, the largest increase (140%) is observed at 100 mM (NH4)2SO4. In both cases, the effector molecule is apparently not NH4+ but NH3. The ligand induces changes in absorption spectra of both oxidized cytochromes at pH 8.3. The magnitude of these changes increases as ammonia concentration is increased, yielding apparent dissociation constants Kdapp of 24.3 ± 2.7 mM (NH4)2SO4 (4.9 ± 0.5 mM NH3) for the Soret region in cytochrome bo3, and 35.9 ± 7.1 and 24.6 ± 12.4 mM (NH4)2SO4 (7.2 ± 1.4 and 4.9 ± 2.5 mM NH3) for the Soret and visible regions, respectively, in cytochrome bd-I. Consistently, addition of (NH4)2SO4 to cells of the E. coli mutant containing cytochrome bd-I as the only terminal oxidase at pH 8.3 accelerates the O2 consumption rate, the highest one (140%) being at 27 mM (NH4)2SO4. We discuss possible molecular mechanisms and physiological significance of modulation of the enzymatic activities by ammonia present at high concentration in the intestines, a niche occupied by E. coli.


1978 ◽  
Vol 33 (10) ◽  
pp. 1241-1242 ◽  
Author(s):  
S. Chaudhari ◽  
T. R. Joshi ◽  
R. V. Joshi

Abstract The phosphorescence decay rates of thallium-doped ammonium chloride (NH4Cl:Tl) phosphors, prepared by crystallization from aqueous solution, have been studied at room temperature for near-ultraviolet emission. The effects of impurity concentration as well as thermal and/or mechanical treatment on the decay rates have been examined. Phosphorescence centres consisting of a Tl+ion and a nearby negative ion vacancy are suggested to be responsible for the observed luminescence decay. The changes in the decay characteristics after pretreatments are explained on the basis of the location of the centres in normal and distorted regions of the host lattice.


2012 ◽  
Vol 441 ◽  
pp. 555-558
Author(s):  
Feng Tao Chen ◽  
San Chuan Yu ◽  
Xing Qiong Mu ◽  
Shi Shen Zhang

The Ti/SnO2-Sb2O3/PbO2 electrodes were prepared by thermal decomposition method and its application in the electrochemical degradation of a heteropolyaromatic dye, Methylene blue (MB), contained in simulated dye wastewater were investigated under mild conditions. The effects of pH, current density and electrolysis time on de-colorization efficiency were also studied. Chemical oxygen demand (COD) was selected as another parameter to evaluate the efficiency of this degradation method on treatment of MB wastewater. The results revealed that when initial pH was 6.0, current density was 50 mA·cm2, electrolysis time was 60 min, Na2SO4 as electrolyte and its concentration was 3.0 g·dm3, the de-colorization and COD removal efficiency can reach 89.9% and 71.7%, respectively.


2012 ◽  
Vol 3 (1) ◽  
Author(s):  
X.Z. Yu ◽  
N. Kanazawa ◽  
W.Z. Zhang ◽  
T. Nagai ◽  
T. Hara ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Ki Hong Lee ◽  
Young Hee Jung ◽  
Jun Pil Hwang ◽  
Jong Sung Sim

The present study concerns the influence of cementitious binder on electrochemical treatment of steel embedded in salt contaminated mortar. As binder, ordinary Portland cement (OPC) and ground granulated blast furnace slag (GGBS) were used and the current density of 250–750 mA/m2 was applied for 4 weeks to complete electrochemical chloride extraction. To evaluate the effect of electrochemical treatment the chloride profile and corrosion behaviour covering chloride concentration, galvanic current density, linear polarization resistance, open circuit potential, and mass loss were measured. An increase in the applied direct current density resulted in a decrease in the chloride concentration at the vicinity of steel, accompanying the mitigated corrosion damage. The performance of electrochemical treatment was more remarkable in mortar containing GGBS presumably due to binding mechanism. However, corrosion damage was more detrimental in GGBS rather than OPC at a given potential, while GGBS had superior corrosion resistance to a corrosive environment and treatment conditions. Therefore, the electrochemical treatment should be conducted prudently to evaluate the corrosion state of embedded steel depending on binder type.


2012 ◽  
Vol 576 ◽  
pp. 484-487
Author(s):  
Raihan Othman ◽  
Farouq Ahmat ◽  
Muhd Amlie Ibrahim ◽  
Assayidatul Laila Nor Hairin ◽  
Hanafi Ani Mohd

Zinc anode is electrodeposited from a 2-M zinc chloride electrolytic bath with varying ammonium chloride supporting electrolyte concentrations (0-5 M) and plating current density (0.1 – 0.6 A cm-2). The total charge quantity supplied during electrodeposition is fixed at 150 mAh. Alkaline zinc-air cell is fabricated using the electrodeposited zinc anode and characterized according to its discharge capacity at constant load current of 20 mA. The effect of various qualities of zinc electrodeposits on the cell discharge performance is discussed. It is found that zinc electrodeposits prepared from electrolytic bath of 5-M ammonium chloride and 0.5 A cm-2 plating current density produced zinc-air cell with the highest output energy i.e. 24 mWh. We observe that the influence of plating current density is more prominent than the plating bath formulation on the zinc anode performance in the cell.


2021 ◽  
Vol 10 (3) ◽  
pp. 415-424
Author(s):  
Aji Prasetyaningrum ◽  
Dessy Ariyanti ◽  
Widayat Widayat ◽  
Bakti Jos

Electroplating wastewater contains high amount of heavy metals that can cause serious problems to humans and the environment. Therefore, it is necessary to remove heavy metals from electroplating wastewater. The aim of this research was to examine the electrocoagulation (EC) process for removing the copper (Cu) and lead (Pb) ions from wastewater using aluminum electrodes. It also analyzes the removal efficiency and energy requirement rate of the EC method for heavy metals removal from wastewater. Regarding this matter, the operational parameters of the EC process were varied, including time (20−40 min), current density (40−80 A/m2), pH (3−11), and initial concentration of heavy metals. The concentration of heavy metals ions was analyzed using the atomic absorption spectroscopy (AAS) method. The results showed that the concentration of lead and copper ions decreased with the increase in EC time. The current density was observed as a notable parameter. High current density has an effect on increasing energy consumption. On the other hand, the performance of the electrocoagulation process decreased at low pH. The higher initial concentration of heavy metals resulted in higher removal efficiency than the lower concentration. The removal efficiency of copper and lead ions was 89.88% and 98.76%, respectively, at 40 min with electrocoagulation treatment of 80 A/m2 current density and pH 9. At this condition, the specific amounts of dissolved electrodes were 0.2201 kg/m3, and the energy consumption was 21.6 kWh/m3. The kinetic study showed that the removal of the ions follows the first-order model.


Sign in / Sign up

Export Citation Format

Share Document