scholarly journals Insights into Solar Disinfection Enhancements for Drinking Water Treatment Applications

2021 ◽  
Vol 13 (19) ◽  
pp. 10570
Author(s):  
Abdassalam A. Azamzam ◽  
Mohd Rafatullah ◽  
Esam Bashir Yahya ◽  
Mardiana Idayu Ahmad ◽  
Japareng Lalung ◽  
...  

Poor access to drinking water, sanitation, and hygiene has always been a major concern and a main challenge facing humanity even in the current century. A third of the global population lacks access to microbiologically safe drinking water, especially in rural and poor areas that lack proper treatment facilities. Solar water disinfection (SODIS) is widely proven by the World Health Organization as an accepted method for inactivating waterborne pathogens. A significant number of studies have recently been conducted regarding its effectiveness and how to overcome its limitations, by using water pretreatment steps either by physical, chemical, and biological factors or the integration of photocatalysis in SODIS processes. This review covers the role of solar disinfection in water treatment applications, going through different water treatment approaches including physical, chemical, and biological, and discusses the inactivation mechanisms of water pathogens including bacteria, viruses, and even protozoa and fungi. The review also addresses the latest advances in different pre-treatment modifications to enhance the treatment performance of the SODIS process in addition to the main limitations and challenges.

2010 ◽  
Vol 61 (5) ◽  
pp. 1307-1315 ◽  
Author(s):  
H.-J. Mälzer ◽  
N. Staben ◽  
A. Hein ◽  
W. Merkel

According to the recommendations of the World Health Organization (WHO) for Water Safety Plans (WSP), a Technical Risk Management was developed, which considers standard demands in drinking water treatment in Germany. It was already implemented at several drinking water treatment plants of different size and treatment processes in Germany. Hazards affecting water quality, continuity, and the reliability of supply from catchment to treatment and distribution could be identified by a systematic approach, and suitable control measures were defined. Experiences are presented by detailed examples covering methods, practical consequences, and further outcomes. The method and the benefits for the water suppliers are discussed and an outlook on the future role of WSPs in German water supply is given.


Author(s):  
Anjana Jain

According to the latest report of the World Health Organization, 7 lakh 83 thousand people die due to polluted water every year in India. The main challenge of the Government of India is to provide clean water to the public. Therefore, in the study presented, an attempt has been made to know why there is pollution of drinking water, what types of diseases are caused by this polluted water, d. An attempt has been made to know its negative effects and pure drinking water treatment. The data and facts have been compiled on a secondary basis. विष्व स्वास्थ संगठन की ताजा रिपोर्ट के अनुसार भारत में प्रतिवर्ष 7 लाख 83 हजार लोग प्रदूषित जल की वजह से मरते है। जनता को साफ पानी पहुचाना भारत सरकार की मुख्य चुनौति है। अतः प्रस्तुत अध्ययन में यह जानने का प्रयास किया गया है कि पेयजल प्रदुषण क्यों होता है घ् इस प्रदूषित जल से किस प्रकार की बीमारियाँ उत्पन्न होती है घ् इसके नकारात्मक प्रभाव एवं शुध्द पेयजल उपचार को जानने का प्रयास किया गया है। आंकड़ो व तथ्यों का संकलन द्वितीयक आधार पर किया गया है।


2015 ◽  
Vol 13 (3) ◽  
pp. 879-896 ◽  
Author(s):  
S. Petterson ◽  
D. Roser ◽  
D. Deere

It is proposed that the next revision of the Australian Drinking Water Guidelines will include ‘health-based targets’, where the required level of potable water treatment quantitatively relates to the magnitude of source water pathogen concentrations. To quantify likely Cryptosporidium concentrations in southern Australian surface source waters, the databases for 25 metropolitan water supplies with good historical records, representing a range of catchment sizes, land use and climatic regions were mined. The distributions and uncertainty intervals for Cryptosporidium concentrations were characterized for each site. Then, treatment targets were quantified applying the framework recommended in the World Health Organization Guidelines for Drinking-Water Quality 2011. Based on total oocyst concentrations, and not factoring in genotype or physiological state information as it relates to infectivity for humans, the best estimates of the required level of treatment, expressed as log10 reduction values, ranged among the study sites from 1.4 to 6.1 log10. Challenges associated with relying on historical monitoring data for defining drinking water treatment requirements were identified. In addition, the importance of quantitative microbial risk assessment input assumptions on the quantified treatment targets was investigated, highlighting the need for selection of locally appropriate values.


2008 ◽  
Vol 8 (2) ◽  
pp. 181-187
Author(s):  
B. Sani ◽  
L. Rossi ◽  
C. Lubello ◽  
S. Zacchei

In Italian drinking water treatment plants (DWTP), the problem of chlorination by-products control is very important as the Italian drinking water regulations (Dlgs. 31/2001, as enactment of the CEU directive 98/83) set very strict limits for these compounds. A possible strategy for controlling the concentrations of DBPs (disinfection by-products) is the application of treatment processes able to reduce the concentration of dissolved organic matter, the main precursor of DBPs, before the dosage of chlorine-based disinfectants. Recently, ion exchange resins for the removal of dissolved organics have shown several applications in drinking water treatment. In this experimental study, the treatment with ion exchange resins MIEX®DOC and the treatment with GAC (granular activated carbon) were evaluated for the removal of dissolved organics. Moreover, the effects of MIEX® pre-treatment on the subsequent GAC filtration phase were evaluated, with particular attention to the effects on the life-time of the GAC filter. The GAC filter operation was simulated by rapid small scale column tests (RSSCT), which allow the evaluation of the GAC breakthrough curve in a shorter time with respect to a full plant and pilot plant trials. On the basis of the experimental results, the ion exchange process was very efficient in dissolved organics removal (60–70% UV254 removal). Moreover, the results indicated that the application of ion exchange resins as pre-treatment in a conventional drinking water treatment train could increase the filter life-time in the subsequent GAC adsorption phase (about 200%) resulting in potentially important cost benefits for the overall treatment process.


2013 ◽  
Vol 848 ◽  
pp. 255-258 ◽  
Author(s):  
Yu Zhong Guo ◽  
Yan Zhen Yu ◽  
Ming Li ◽  
Guang Yong Yan

By the reason of strong responses activity and oxidation ability, Chlorine dioxide as oxidant and disinfectant has been applied to peroxidation and disinfection more and more widely.In this paper, it give an account of the preparation of chlorine dioxide, as oxidants to raw water pretreatment, used in filter water disinfection ,the detection technology of chlorine dioxide and disinfection by-products, the water quality standards formulated by domestic and overseas chlorine dioxide in using chlorine dioxide, and summarized progress on drinking water treatment with chlorine dioxide .


2001 ◽  
Vol 43 (12) ◽  
pp. 225-228 ◽  
Author(s):  
K. Lahti ◽  
J. Rapala ◽  
A-L. Kivimäki ◽  
J. Kukkonen ◽  
M. Niemelä ◽  
...  

Problems caused by cyanobacteria are common around the world and also in raw water sources of drinking water treatment plants. Strains belonging to genera Microcystis, Anabaena and Planktothrix produce potent hepatotoxins, the microcystins. Laboratory and pilot scale studies have shown that microcystins dissolved in water may pass the conventional surface water treatment processes. In 1998 the World Health Organization proposed a guide value of 1 μg/L for microcystin-LR (MC-LR) in drinking water. The purpose of this research was to study the occurrence of microcystins in raw water sources of surface waterworks and in bank filtration plants and to evaluate the removal of microcystins in operating waterworks. Four bank filtration plants and nine surface waterworks using different processes for water treatment were monitored. Phytoplankton was identified and quantified, and microcystins analysed with sensitive immunoassay. Microcystin occurrence in selected water samples was verified with HPLC and a protein phosphatase inhibition method. Microcystins were detected sporadically in raw water sources of most of the waterworks. In two raw water supplies toxins were detected for several months. The highest microcystin concentrations in incoming raw water were approximately 10 μg/L MC-LR equivalents. In treated drinking water microcystins were detected occasionally but the concentrations were always below the guide value proposed by WHO.


Chemosphere ◽  
2021 ◽  
Vol 265 ◽  
pp. 129056
Author(s):  
Takahiro Fujioka ◽  
My Thi Tra Ngo ◽  
Ryo Makabe ◽  
Tetsuro Ueyama ◽  
Haruka Takeuchi ◽  
...  

2010 ◽  
pp. 69-73
Author(s):  
Franclin S. Foping

Drinking contaminated water can be harmful to our health. According to the World Health Organization, about 1.8 million people die every year across the world from water-borne diseases mainly caused by polluted drinking water. Furthermore, the cryptosporidium outbreak that happened in Galway in 2007 indicates the urgency to provide appropriate solutions in order to counteract this ominous situation in the country. Water treatment plants (WTP) are basic components of modern water supply and distribution systems. These are engineering systems that purify raw water to specific safety levels. The raw water passes through a series of treatment phases wherein it is processed and purified according to existing safety protocols regulating drinking water. After undergoing a purification step, the drinking water is distributed to the consumers through a network of pipes, pumps and reservoirs. The research presented in this report is focused on the safety of these critical infrastructures. In particular, the ...


2011 ◽  
Vol 11 (1) ◽  
pp. 23-29 ◽  
Author(s):  
P. M. Huck ◽  
S. Peldszus ◽  
C. Hallé ◽  
H. Ruiz ◽  
X. Jin ◽  
...  

Fouling remains one of the major constraints on the use of low pressure membranes in drinking water treatment. Work over the last few years has shown the importance of biopolymers (carbohydrates and protein-like material) as foulants for ultrafiltration (UF) membranes. The purpose of this study was to investigate at pilot scale the use of rapid biofiltration (without prior coagulation or ozone addition) as an innovative pretreatment to reduce fouling of UF membranes. The investigation was carried out on a water with a higher than average DOC and significant temperature variation. The biofilters, each operated at a hydraulic loading of 5 m/h, had empty bed contact times of 5, 10 and 15 minutes. The membrane unit was operated at a flux equivalent to 60 LMH at 20°C. The investigation confirmed the encouraging results obtained in an earlier smaller scale study with essentially the same water. Increased biofiltration contact time (i.e. increased bed depth) led to lower rates of hydraulically irreversible fouling. The initial biofiltration backwash procedure, involving air scour as is common in chemically assisted filtration, led in some cases to an increased rate of membrane fouling immediately after the backwash. An alternative backwashing strategy was developed, however the feasibility of operating with this approach over very long periods of time needs to be confirmed. To assist in full-scale implementation of this “green” and simple pretreatment, the design and operating conditions for the biofilters should be optimized for various types of waters. It is expected that biofiltration pretreatment will be of particular interest for small and/or isolated systems where a higher initial capital cost may be acceptable because of operational simplicity and reduced chemical requirements.


2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Emmanuel Wani Jube Gore ◽  
Yulin Tang ◽  
Harrison H. Boying

The supply of clean drinking water is one of the most critical facets of primary health care, the main challenges of sustainable development in rural regions. However, Rajaf Payam experiences significant challenges in accessing clean and safe water. The study is designed to explore drinking water treatment methods in Rajaf Payam. Questionnaire was designed to conduct survey on sources of drinking water and drinking water treatment methods in the area, published articles included reports from the national government and some NGOs working in the rural drinking water sector were collected. So far 200 people participated in this study, from whom 60% were male, 40% female. However, 50 critical informant interviews and surveys were conducted, with 150 participants filling out questionnaires. The results show that 66% of the community use chlorine for drinking water treatment. Nonetheless, 19% are using boiling method, 10% using normal filtration (Water settling). At the same time, 5% know nothing about drinking water treatment. Therefore, this study recommending the Point-of-use (POU) of drinking water treatment technologies such as boiling, slow sand filtration, chemical disinfection, flocculation and coagulation, UV-C disinfection, and solar disinfection to the community of Raja Payam to enable them to access high quality drinking water and to avoid chronic drinking water related disease.


Sign in / Sign up

Export Citation Format

Share Document