scholarly journals Sustainable Masonry Mortars with Fly Ash, Blast Furnace Granulated Slag and Wheat Straw Ash

2021 ◽  
Vol 13 (21) ◽  
pp. 12245
Author(s):  
Slobodan Šupić ◽  
Vesna Bulatović ◽  
Mirjana Malešev ◽  
Vlastimir Radonjanin ◽  
Ivan Lukić

Due to greenhouse gas emissions, the production of cement clinker is considered unsustainable and many attempts are being made to replace cement with alternative materials sourced from agriculture, industry and other urban practices, such as construction and demolition works. The aim of this paper is to analyze the effects of cement substitution by locally available waste materials in Serbia, such as fly ash (FA), blast furnace granulated slag (BFGS) and wheat straw ash (WSA), up to the 50% replacement volume rate in cement–lime mortars. As the effective application of supplementary cementitious materials (SCMs) in cement-based materials requires a comprehensive insight into their properties, a characterization of materials involving all relevant physical, chemical and mechanical tests is conducted. Ten different mortar mixed with ingredients of a volume ratio 1:2:4 (cementitious powder/lime/sand) were designed and their consistency, bulk density, capillary water absorption, flexural strength, compressive strength and thermal analysis (TGA/DTA) results were examined to determine the influence of the abovementioned SCMs on mortar properties. Research findings highlight the possibility of replacing cement with slag (50%), fly ash (30%) or wheat straw ash (30%) while maintaining its performance and improving the economic and environmental impacts of masonry mortar production.

2020 ◽  
Vol 10 (10) ◽  
pp. 3511
Author(s):  
Abdul Qudoos ◽  
Ehsanullah Kakar ◽  
Atta ur Rehman ◽  
In Kyu Jeon ◽  
Hong Gi Kim

The worldwide production of cement is growing every year due to its increased use in the construction. Cement production is affiliated with an environmental concern as it contributes to the CO2 emissions. It is imperative to reduce the cement production by incorporating supplementary cementitious materials in the cement composites. In this research study, wheat straw ash (WSA) was used as an alternate of ordinary Portland cement. The ash was ground separately with a ball mill and a disintegrator mill as well as with a combination of both to enhance its pozzolanic efficiency. Mortar and paste specimens were made by substituting cement with WSA (20% by weight). Ash specimens were examined in terms of particle size distribution, X-ray diffraction, and X-ray fluorescence analyses. The performance of the ash specimens in cement composites was examined via compressive and flexural strengths, and ultrasonic pulse velocity (UPV) tests. Isothermal calorimetric, thermogravimetric analyses (TGA), mercury intrusion porosimetry (MIP), and scanning electron microscopy (SEM) were also employed on the specimens. The results revealed that the particle size of the wheat straw ash specimens significantly reduced and specific surface area enhanced when ground with a combination of both milling techniques. Cement composites made with this type of ash demonstrated improved mechanical and physical properties, accelerated hydration reaction at the early ages, reduce calcium hydroxide content at the later ages, and densified microstructure.


2019 ◽  
Vol 1 (1) ◽  
pp. 43-44

Several supplementary cementitious materials (SCM) were blended with Portland cement clinker in order to produce more sustainable binders. The use of such materials, where no additional clinkering process is involved, leads to a significant reduction in CO2 emissions per ton of cementitious materials (grinding, mixing and transport of concrete and use very little energy compared to the clinkering process) and is a means to (re)utilize by-products of industrial manufacturing processes. Fly ash, for example, is the most commonly used supplementary cementitious material. The blending of Portland cement with fly ash results in the reduction of the total amount of portlandite in the hydrated mixture [1-4], somewhat less pronounced than for silica fume as: the reactivity of fly ash is very limited and as the CaO in the fly ash is an additional source of calcium [5]. Since fly ash particles are more spherical in shape than cement particles, workability and pumpability can be improved, by adding fly ash, also, fly ashes can cause low early strengthening. In this paper, the effects of Fly-ash as SCM’s on microstructure and hydration kinetics are studied.


Author(s):  
Naraindas Bheel ◽  
Paul O. Awoyera ◽  
Oladimeji B. Olalusi

In recent years, recycled materials mostly available in abundant quantities in local agricultural fields are considered as potential constituent material for concrete production. Also, cement production emits many toxic gases in the atmosphere, which causes environmental pollution and greenhouse gases. Thus, recyc;ed materials, such as fly ash (FA), wheat straw ash (WSA), and maize corn ash (MCA) are condered as cementitious binders in concrete for sustainable development. This study aims to determine the engineering properties of concrete with a ternary blend of fly ash, wheat straw ash, and maize cob ash. A total of 73 concrete cubes, 42 reinforced concrete prisms and 42 concrete cylinders were cast to examine mechanical properties of concrete at 7, 28, and 56 curing days. At 28 days (maturity period), the experimental results showed an increase in compressive, tensile, and flexural strength by 12.28%, 9.33%, and 9.93%, respectively, at 9% substitution of ternary cementitious materials (TCM). However, the density of concrete was reduced by 9.92%, with an increase in the TCM content after 28 days. Moreover, the modulus of elasticity was improved by 14.23% with an increase in the content of TCM up to 18% after 28 days, and drying shrinkage of concrete was reduced with the introduction of TCM content after 50 days. However, the workability of fresh concrete decreased as the percentage of TCM increased. Results of this study proved that agricultural materials investgated could be good fit as binder in cementitious composites.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7869
Author(s):  
Rajagopalan Sam Rajadurai ◽  
Su-Tae Kang

Supplementary cementitious materials (SCMs), such as fly ash (FA), blast furnace slag (BS), and silica fume (SF), have been mostly used as a replacement for Portland cement (PC). Replacing the SCMs with cement can provide improved strength characteristics; however, their applicability depends on the flow characteristics of the fresh mixtures. In this study, the rheological performance of cementitious suspensions in paste scale with different water-to-solid (W/S) volume ratios, varied from 1.25, 1.50, 1.75, 2.00, 2.25, to 2.50, was evaluated. As a result of the rheological tests, the yield stress and plastic viscosity of PC, FA, BS, and SF suspensions decreased as the W/S ratio increased. This study also estimated the inter-particle distances of the cementitious suspensions, and their relationship to the rheological properties was established. The inter-particle distances of the PC, FA, BS, and SF suspensions were in the ranges of 5.74~14.67 µm, 5.18~11.66 µm, 3.82~9.34 µm, and 0.107~0.27 µm, respectively. For very fine particles with a large surface area, the sensitivity to the rheological properties was high and the sensitivity was low when the particle sizes increased, indicating that the rheological properties were more sensitive to fine particles.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1084 ◽  
Author(s):  
Adriagni C. Barboza-Chavez ◽  
Lauren Y. Gómez-Zamorano ◽  
Jorge L. Acevedo-Dávila

Hybrid cement has become one of the most viable options in the reduction of CO2 emissions to the environment that are generated by the cement industry. This could be explained by the reduction of the content of clinker in the final mixture and substitution of the remaining percentage with supplementary cementitious materials with the help of an alkaline activation. Following that, properties that are provided by an Ordinary Portland Cement and of a geopolymer are mixed in this type of hybrid material and could be achieved at room temperature. Thereafter, the main objective of this research was to synthesize hybrid cements reducing the clinker content of Portland Cement up to 20% and use metakaolin and fly ash as supplementary cementitious materials in different proportions. The mixtures were alkaline activated with a mixture of sodium silicate and sodium hydroxide, calculating the amounts according to the percentage of Na2O that is present in each of the activators. The samples were then characterized using Compressive strength, X-ray diffraction, Fourier Transform Infrared Spectroscopy, and Scanning Electron Microscopy with energy-dispersive X-ray spectroscopy. The results indicated that the hybrid cements have similar mechanical properties than an Ordinary Portland Cement, and they resulted in a dense matrix of hydration products similar to those that are generated by cements and geopolymers.


2019 ◽  
Vol 14 (1) ◽  
pp. 47-54
Author(s):  
Michaela Smolakova ◽  
Adriana Estokova

Abstract Acid rain is identified as one of the most serious environmental problems nowadays and it is mainly a mixture of sulfuric and nitric acids. Deterioration of concrete structures exposed to aggressive acid rain attack is a key durability issue that affects the performance and maintenance costs of vital civil infrastructures. The motivation for understanding the acid rain corrosion process is high because of the early age deterioration of many concrete structures exposed to acid rain. The main objective of this study was to investigate the durability of concrete specimens with different supplementary cementitious materials, such as fly ash, zeolite and blast furnace slag against acid rain attack. Experiments of acid rain simulation influence on the composites were carried out for 7 weeks and parameters like visual changes, absorbability and leachability of calcium and silicon ions were evaluated. The increase in absorbability was detected for all samples while the sample with blast furnace slag was identified to be the most durable in this point of view. The most durable sample considering leached-out calcium and silicon ions was found to be sample with fly ash.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1798
Author(s):  
Yanfei Yue ◽  
Jing Jing Wang ◽  
P. A. Muhammed Basheer ◽  
Yun Bai

Establishing the carbonation profile is of great significance to the prediction of the service life of reinforced concrete structures. In our previous work, Raman spectroscopy was shown to be an efficient tool for characterizing calcium carbonate (CaCO3) polymorphs and their profile in plain Portland cement (PC) matrices. However, as supplementary cementitious materials (SCMs), particularly fly ash (FA) and ground granulated blast furnace slag (GGBS), are widely used in concrete, establishing the carbonation profile without considering the possible effects of these SCMs could be of little significance to the real world. This paper, thus, investigated the effects of FA and GGBS on the working capacity and reliability of Raman spectroscopy for establishing the carbonation profile in PC blends containing SCMs. The thermogravimetry (TG) analysis was also conducted to verify the results from Raman spectroscopy. The results show that Raman spectroscopy demonstrated a good capacity for differentiating the variation of CaCO3 contents in FA or GGBS blends. However, the incorporation of FA and GGBS into the PC system caused some adverse effects on the quantification of CaCO3 by Raman spectroscopy, which could be attributed to the darker color and weak scatter nature of FA and the high content of glassy phases in GGBS.


2020 ◽  
Vol 71 (7) ◽  
pp. 775-788
Author(s):  
Quyet Truong Van ◽  
Sang Nguyen Thanh

The utilisation of supplementary cementitious materials (SCMs) is widespread in the concrete industry because of the performance benefits and economic. Ground granulated blast furnace slag (GGBFS) and fly ash (FA) have been used as the SCMs in concrete for reducing the weight of cement and improving durability properties. In this study, GGBFS at different cement replacement ratios of 0%, 20%, 40% and 60% by weight were used in fine-grained concrete. The ternary binders containing GGBFS and FA at cement replacement ratio of 60% by weight have also evaluated. Flexural and compressive strength test, rapid chloride permeability test and under-water abrasion test were performed. Experimental results show that the increase in concrete strength with GGBFS contents from 20% to 40% but at a higher period of maturity (56 days and more). The chloride permeability the under-water abrasion reduced with the increasing cement replacement by GGBFS or a combination of GGBFS and FA


2017 ◽  
Vol 68 (6) ◽  
pp. 1182-1187
Author(s):  
Ilenuta Severin ◽  
Maria Vlad

This article presents the influence of the properties of the materials in the geopolymeric mixture, ground granulated blast furnace slag (GGBFS) + wheat straw ash (WSA) + uncalcined red mud (RMu), and ground granulated blast furnace slag + wheat straw ash + calcined red mud (RMc), over the microstructure and mechanical properties of the synthesised geopolymers. The activation solutions used were a NaOH solution with 8M concentration, and a solution realised from 50%wt NaOH and 50%wt Na2SiO3. The samples were analysed: from the microstructural point of view through SEM microscopy; the chemical composition was determined through EDX analysis; and the compressive strength tests was done for samples tested at 7 and 28 days, respectively. The SEM micrographies of the geopolymers have highlighted a complex structure and an variable compressive strength. Compressive strength varied from 24 MPa in the case of the same recipe obtained from 70% of GGBFS + 25% WSA +5% RMu, alkaline activated with NaOH 8M (7 days testing) to 85 MPa in the case of the recipe but replacing RMu with RMc with calcined red mud, alkaline activated with the 50%wt NaOH and 50%wt Na2SiO3 solution (28 days testing). This variation in the sense of the rise in compressive strength can be attributed to the difference in reactivity of the materials used in the recipes, the curing period, the geopolymers structure, and the presence of a lower or higher rate of pores, as well as the alkalinity and the nature of the activation solutions used.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 475
Author(s):  
Ana María Moreno de los Reyes ◽  
José Antonio Suárez-Navarro ◽  
Maria del Mar Alonso ◽  
Catalina Gascó ◽  
Isabel Sobrados ◽  
...  

Supplementary cementitious materials (SCMs) in industrial waste and by-products are routinely used to mitigate the adverse environmental effects of, and lower the energy consumption associated with, ordinary Portland cement (OPC) manufacture. Many such SCMs, such as type F coal fly ash (FA), are naturally occurring radioactive materials (NORMs). 226Ra, 232Th and 40K radionuclide activity concentration, information needed to determine what is known as the gamma-ray activity concentration index (ACI), is normally collected from ground cement samples. The present study aims to validate a new method for calculating the ACI from measurements made on unground 5 cm cubic specimens. Mechanical, mineralogical and radiological characterisation of 28-day OPC + FA pastes (bearing up to 30 wt % FA) were characterised to determine their mechanical, mineralogical and radiological properties. The activity concentrations found for 226Ra, 212Pb, 232Th and 40K in hardened, intact 5 cm cubic specimens were also statistically equal to the theoretically calculated values and to the same materials when ground to a powder. These findings consequently validated the new method. The possibility of determining the activity concentrations needed to establish the ACI for cement-based materials on unground samples introduces a new field of radiological research on actual cement, mortar and concrete materials.


Sign in / Sign up

Export Citation Format

Share Document