scholarly journals Levulinic Acid Production from Macroalgae: Production and Promising Potential in Industry

2021 ◽  
Vol 13 (24) ◽  
pp. 13919
Author(s):  
Maria Dyah Nur Meinita ◽  
Amron Amron ◽  
Agus Trianto ◽  
Dicky Harwanto ◽  
Wahyu Caesarendra ◽  
...  

The development of macroalgal biorefinery products as an alternative source of renewable fuels is an opportunity to solve the dependence on fossil fuels. Macroalgae is a potential biomass that can be developed as a raw material for producing platform chemicals such as levulinic acid (LA). In the industrial sector, LA is among the top 12 biomass-derived feedstocks designated by the U.S. Department of Energy as a high-value chemical. Several studies have been conducted on the production of LA from terrestrial-based biomass, however, there is still limited information on its production from macroalgae. The advantages of macroalgae over terrestrial and other biomasses include high carbohydrate and biomass production, less cultivation cost, and low lignin content. Therefore, this study aims to investigate the potential and challenge of producing LA from macroalgae in the industrial sector and determine its advantages and disadvantages compared with terrestrial biomass in LA production. In this study, various literature sources were examined using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) method to identify, screen, and analyze the data of the published paper. Despite its advantages, there are some challenges in making the production of levulinic acid from macroalgae feasible for development at the industrial scale. Some challenges such as sustainability of macroalgae, the efficiency of pretreatment, and hydrolysis technology are often encountered during the production of levulinic acid from macroalgae on an industrial scale.

2021 ◽  
Author(s):  
Arathi Sreenikethanam ◽  
Amit Bajhaiya

Plastic has become one of the most crucial requirements of the modern-day living. The continuous reliance on the petroleum-based, non-biodegradable plastics has resulted in increased global environmental damage and rapid depletion of fossil fuels. Bioplastic, with remarkably similar properties to petroleum-based plastics is a promising alternative to overcome these emerging challenges. Despite the fact that algae and cyanobacteria are feasible alternative source for bio-plastic, there have been limited studies on strain selection and optimization of culture conditions for the bio plastic production. Naturally, algae and cynobacteria can accumulate higher amount of metabolites under stress conditions however one of the recent study on genetic engineering of Synechocystis sp. coupled with abiotic stresses showed up to 81% of increase in PHB level in the transformed lines. This chapter provides summary of various studies done in the field of algal bio-plastics, including bioplastic properties, genetic engineering, current regulatory framework and future prospects of bioplastic. Further the applications of bioplastics in industrial sector as well as opportunities and role of bio plastic in green economy are also discussed.


2020 ◽  
Author(s):  
Mateus S. Amaral ◽  
Carla C.A. Loures ◽  
Fabiano L. Naves ◽  
Gisella L. Samanamud ◽  
Messias B. Silva ◽  
...  

The search for a renewable source as an alternative to fossil fuels has driven the research on new sources of biomass for biofuels. An alternative source of biomass that has come to prominence is microalgae, photosynthetic micro-organisms capable of capturing atmospheric CO2 and accumulating high levels of lipids in their biomass, making them attractive as a raw material for biodiesel synthesis. Thus, various studies have been conducted in developing different types of photobioreactors for the cultivation of microalgae. Photobioreactors can be divided into two groups: open and closed. Open photobioreactors are more susceptible to contamination and bad weather, reducing biomass productivity. Closed photobioreactors allow greater control against contamination and bad weather and lead to higher rates of biomass production; they are widely used in research to improve new species and processes. Therefore, many configurations of closed photobioreactors have been developed over the years to increase productivity of microalgae biomass.


2018 ◽  
Vol 68 (12) ◽  
pp. 2771-2775
Author(s):  
Mihaela Gabriela Dumitru ◽  
Delia Nica Badea ◽  
Dragos Tutunea

Across the world the fossil fuels are depleting and countries are forced to find an alternative source to reduce green house gases and replace petroleum fuels. Depending of the raw material sources, vegetable oils, animal fats or algae, biodiesel offers a solution for a clean-burning diesel fuel. Watermelon (Citrullus lanatus L.) seed were collected and the oil was extracted. The oil was transformed into fatty acid methyl esters through a transesterification process and blended in various proportions with diesel fuel. The physico-chemical properties of fuels were determined. Results obtained showed that the biodiesel has a density (0.870 g/cm3), kinematic viscosity 40�C (3.1 mm2/s), flash point (128�C), saponification index (150 mgKOH/g), iodine index (108 mgI2/100g), peroxide index (3.7 mEqO2/Kg) and oxidation stability (6 hours) in the range of UE specifications. The engine tests were conducted on a Deutz F4L912 diesel engine, 51 kW, 4-stroke, air cooled, direct injection diesel engine. From the test performed was observed that the CO and HC emissions were reduced due to high content of oxygen in biodiesel blends.


Holzforschung ◽  
2018 ◽  
Vol 73 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Jorge Rencoret ◽  
Ana Gutiérrez ◽  
Eulogio Castro ◽  
José C. del Río

AbstractOlive tree pruning (OTP) is an abundant and inexpensive agricultural lignocellulosic residue that is an interesting feedstock for producing bioethanol and other bio-products in the context of lignocellulosic biorefineries. However, the presence of lignin in OTP hinders the transformation processes as it limits the access to cell wall polysaccharides. On the other hand, the aromatic/phenolic structure of the lignin polymer makes it an interesting raw material for producing chemicals, fuels and other commodities that are nowadays produced from fossil fuels. Thus, the knowledge of the OTP lignin structure is crucial to develop tailor-made pretreatments for their removal as well as for additional valorization of the lignin polymer. In this work, the OTP lignin was isolated as milled wood lignin (MWL), a lignin preparation that is considered representative of the native lignin, and characterized by two-dimensional nuclear magnetic resonance (2D-NMR) and thioacidolysis. The results demonstrated that the lignin is mainly composed of guaiacyl (G) and syringyl (S) lignin units in similar abundances (S/G ratio of ~1), with minor amounts ofp-hydroxyphenyl (H) units. The most abundant lignin inter-unit linkages are β-O-4′ alkyl-aryl ethers (75% of all linkages), followed by the condensed phenylcoumarans (12%) and resinols (8%), and with lower amounts of dibenzodioxocins (2%) and spirodienones (3%). The analysis of the thioacidolysis dimers gave additional information regarding the distribution of the lignin units involved in condensed interunit linkages, including 5-5′, 4-O-5′, β-5′, β-1′ and β-β′. The high lignin content (25%), together with the relatively low S/G ratio and the abundance of condensed (carbon-carbon linked) structures, points to a low reactivity of OTP lignin during delignification pretreatments.


Author(s):  
C. Curbelo Hernández ◽  
E. Véliz Lorenzo ◽  
J. M. Ameneiros Martínez

Thescarce oil supplies and the emissions of gases of greenhouse effect have caused the interest in production and utilization of lignocellulosic bioethanol. This can substitute partially or totally the fossil fuels. The stages of pretreatment and enzymatic hydrolysis are the most expensive. Different pretreatments have been studied for ethanol production from these materials. Their results depend on the method characteristics and on biomass used. The agroindustrial wastes present a composition with possibilities of being evaluated like raw material for bioethanol production. In the present research, the pretreatment stages with Ultrasound and Ozone are studied, in order to decrease the lignin content and to increase the performance of the fermentative sugars in the lignocellulosic wastes (rice hull and dark tobacco vein). In the first pretreatment procedure, time and waste type were studied and in the second stage, the ozone concentration, waste type and moisture content were the studied variables. A combined procedure was applied to the best preliminary results. It is demonstrated that a decrease in the lignin concentration and the structural transformation of the materials under consideration come true. The best results were gotten for the rice hulls. 


2021 ◽  
Vol 273 ◽  
pp. 08016
Author(s):  
Tatyana Zhukova ◽  
Olga Panfilova

The paper considers the problems of dynamics of agro-industrial sector in Russia and the tendencies of its functioning in the contemporary context. The specific features of the country agrarian sphere, advantages and disadvantages of raw-material and agricultural orientation of the Russian economy are studied. It is emphasized that the agrarian sector is basic for the country development; the achievements in the field of providing the agrarian sphere with agricultural means of production are pointed out. Simultaneously, it is stressed that adaptation of the agricultural market to new conditions is connected with the factors of irresistible force influencing not only the national economy but also the whole world economy. The survival potential under the given conditions is connected, on the one hand, with the efforts of national producers, and, on the other hand, it directly depends on the transformation of financial relations and economic interrelations of the world community countries.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 116
Author(s):  
Lucas Nascimento ◽  
André Ribeiro ◽  
Ana Ferreira ◽  
Nádia Valério ◽  
Vânia Pinheiro ◽  
...  

In search of a more sustainable society, humanity has been looking to reduce the environmental impacts caused by its various activities. The energy sector corresponds to one of the most impactful activities since most energies produced come from fossil fuels, such as oil and coal, which are finite resources. Moreover, their inherent processes to convert energy into electricity emit various pollutants, which are responsible for global warming, eutrophication, and acidification of soil and marine environments. Biofuels are one of the alternatives to fossil fuels, and the raw material used for their production includes vegetable oils, wood and agricultural waste, municipal waste, and waste cooking oils (WCOs). The conventional route for WCO valorization is the production of biodiesel, which, as all recovery technologies, presents advantages and disadvantages that must be explored from a technical and economic perspective. Despite its successful use in the production of biodiesel, it should be noticed that there are other approaches to use WCO. Among them, thermochemical technologies can be applied to produce alternative fuels through cracking or hydrocracking, pyrolysis, and gasification processes. For each technology, the best conditions were identified, and finally, projects and companies that work with this type of technology and use WCO were identified.


Bio-ethanol, a type of biofuel, is known as renewable energy source as it is derived from biomass as its raw material. Biomass can be found in abundance and sustainable i.e. sources are available continuously, unlike the currently used conventional fossil fuels where these sources are limited and depleting. In this study, biomass from fruit waste, banana peels, were utilized to produce bio-ethanol via hydrolysis and fermentation process. Banana peels, a lignocellulosic biomass, possesses compositions which favour these processes, where the banana peels are rich in cellulose content and low in lignin content. Mechanical pre-treatment of the banana peels was conducted to further ease the hydrolysis process by reducing the particle size of the biomass. Hydrolysis was carried out for 24 hours at 50ºC at different pH using sulfuric acid H2SO4 acid and sodium hydroxide NaOH as the base, to study the effect of pH on the hydrolysis process and hence the final bio-ethanol production, in terms of concentration. Fermentation of the hydrolysis products were carried out using glucose-yeast broth for 4 days at temperature of 35ºC. Water content in the bio-ethanol product from fermentation process was separated using rotary evaporator, prior to ethanol analysis using Gas Chromatography (GC-MS). Concentration of ethanol was found to be the highest at acidic pH conditions; pH 4 to 6. Lowest ethanol concentration was recorded at higher pH values, indicating alkaline conditions do not favour the hydrolysis process.


Author(s):  
Lucas Bonfim-Rocha ◽  
André Batista Silva ◽  
Sérgio Henrique Bernardo de Faria ◽  
Marcelo Fernandes Vieira ◽  
Marcos de Souza

Abstract Research activities discuss about the global environmental impacts of carbon dioxide (CO2) emissions. Government authorities and international conferences aim to reduce greenhouse gas emissions and encourage the development of sustainable processes using renewable sources. In order to reduce emissions from the industrial sector, CO2 capture and reuse as a raw material in the production of marketable products have encouraged the development of technologies. Among many possible chemical products manufactured from CO2, sodium bicarbonate appears in this context as an important compound in the chemical, food, textile and pharmaceutical industries. Then, the main objective of this work was to carry out a bibliographical review of the main production processes available in the literature for synthesis of sodium bicarbonate and the main chemical reactions involved in the crystallization reactor. Regarding to the processes, soda ash carbonation from trona, the Solvay process and the sodium sulfate route were assessed and compared. Among the main raw materials used in the production process of sodium bicarbonate, sodium chloride is presented as most economically feasible while sodium carbonate and sodium sulfate are indicated as the most environmentally viable alternatives. Beyond, the global processes were presented for each route discussing advantages and disadvantages for the separation and purification steps required after the reaction. It is notable that the main raw material is sodium chloride due to its easy possibility of obtaining, from seawater, and large availability for applications at the food industry. Indeed, the production of sodium bicarbonate by means of the Solvay process was the route that presented the best results regarding to the technology development and economic cost. Use of sodium sulfate as raw material has proved to be a possible route, besides presenting numerous advantages such as production of valuable byproducts. However, this route may be not totally viable compared to conventional routes due to the complexity of products separation and purification. The review showed that there is a lack in the scientific literature regarding to the development of studies evaluating sodium bicarbonate crystallization and purification in a cost effective and technical detailed approach.


2016 ◽  
Vol 3 (6) ◽  
pp. 251-255
Author(s):  
Michael Tsatiris ◽  
Kyriaki Kitikidou

In this paper, the meaning of biomass is defined and it is explained why it is a potential source of energy. The utilization of biomass as an energy source is based on heat energy production during its combustion. The solar energy captured and stored by plants is released in the form of heat energy during the biomass combustion. The variables that affect the energy value (calorific value) of forest biomass involve the chemical composition, percentage of extractives, moisture content, ash content and density. Softwoods generally contain more energy than hardwoods on a dry weight basis, due to higher lignin content plus the presence of more resinous extractives. Lastly, the advantages and disadvantages of biomass as an energy source are analyzed: biomass is renewable and eco-friendly, but its efficiency is low.


Sign in / Sign up

Export Citation Format

Share Document