scholarly journals Algae Based Bio-Plastics: Future of Green Economy

2021 ◽  
Author(s):  
Arathi Sreenikethanam ◽  
Amit Bajhaiya

Plastic has become one of the most crucial requirements of the modern-day living. The continuous reliance on the petroleum-based, non-biodegradable plastics has resulted in increased global environmental damage and rapid depletion of fossil fuels. Bioplastic, with remarkably similar properties to petroleum-based plastics is a promising alternative to overcome these emerging challenges. Despite the fact that algae and cyanobacteria are feasible alternative source for bio-plastic, there have been limited studies on strain selection and optimization of culture conditions for the bio plastic production. Naturally, algae and cynobacteria can accumulate higher amount of metabolites under stress conditions however one of the recent study on genetic engineering of Synechocystis sp. coupled with abiotic stresses showed up to 81% of increase in PHB level in the transformed lines. This chapter provides summary of various studies done in the field of algal bio-plastics, including bioplastic properties, genetic engineering, current regulatory framework and future prospects of bioplastic. Further the applications of bioplastics in industrial sector as well as opportunities and role of bio plastic in green economy are also discussed.

2020 ◽  
Vol 6 (1) ◽  
pp. 60
Author(s):  
António Gonçalves Fortes ◽  
Baltazar Raimundo

Face aos problemas socioambientais e econômicos resultantes do uso dos combustíveis fósseis, Moçambique vem implementado diversos projetos de inclusão das energias renováveis (ER) na matriz energética nacional. Uma alternativa promissora é o uso da bioenergia, com vista a explorar seu potencial para produção de energia de forma sustentável. Nessa perspectiva, este artigo objetiva realizar a caracterização do setor de biomassa e bioenergia em Moçambique, através das tecnologias usadas no processamento, o contexto legal e os aspetos sustentáveis na produção e utilização desta fonte. Os resultados mostram que a biomassa (sólida, liquida e gasosa) pode ser utilizada diretamente para geração de calor e/ou eletricidade. A biomassa lenhosa é a mais usada pela população moçambicana para fins domésticos, e casualmente, para fins comercial e industrial. Concluir que, para o atual cenário nacional, a inclusão da biomassa derivada de rejeitos urbanos e industriais pode resolver, em simultâneo, o problema energético e de gestão de resíduos. É sustentável a relação entre a produção de alimento – geração de energia – preservação do meio ambiente. E o uso de tecnologias eficientes na geração dos biocombustíveis reduz os impactos ambientais e a dependência dos combustíveis fósseis, para além de promover os serviços de maior qualidade, contribuir para o aumento da eficiência de conversão e na sustentabilidade energética, especialmente na área rural.Palavras chaves: bioenergia; fonte alternativa; tecnologias de produção; sustentabilidade.Bioenergy in Mozambique: production technologies, use and sustainable aspectsABSTRACTIn view of the socio-environmental and economic problems resulting from the use of fossil fuels, Mozambique has implemented several projects to include renewable energies (RE) in the national energy matrix. A promising alternative is the use of bioenergy, with a view to exploring its potential for sustainable energy production. In this perspective, this article aims to characterize the bioenergy sector in Mozambique, through the technologies used in the conversion, the legal context and the sustainable aspects in the production and use of this source. The results show that biomass (solid, liquid and gaseous) can be used directly to generate heat and/or electricity. Woody biomass is the most used by the Mozambican population for domestic purposes, and casually, for commercial and industrial purposes. To conclude that, for the current national scenario, the inclusion of biomass derived from urban and industrial waste can simultaneously solve the energy and waste management problem. The relationship between food production - energy generation - preservation of the environment is sustainable. And the use of efficient technologies in generation of biofuels reduces environmental impacts and dependence on fossil fuels, in addition to promoting higher quality services, contributing to increasing conversion efficiency and energy sustainability, especially in rural areas.Keywords: bioenergy; alternative source; production technologies; sustainability.


2021 ◽  
Vol 11 (3) ◽  
pp. 072-077
Author(s):  
Siti Zulaiha

Biofuel is one of the most promising alternative energy sources for reducing human reliance on fossil fuels. Microalgae has recently emerged as the most promising biofuel source. However, biofuels from microalgae are still not feasible to replace fossil fuels because of their high production costs, therefore, it is necessary to pick microalgae species with high growth rates and lipid content. Overexpression of lipid biosynthesis enzymes and inhibition of competitive metabolic pathways are two genetic engineering strategies that can be developed to assess microalgae lipid production. Malate and multienzyme enzymes (GPAT, LPAAT and DGAT) can be overexpressed in microalgae to boost lipid production. The strategy of blocking competitive metabolic pathways can be carried out through suppression of starch metabolism and lipid catabolism. The strategy of blocking competitive metabolic pathways has been carried out in several microalgae and is effective for enhancing lipid biosynthesis. Several mutations that block both the starch metabolic and lipid catabolic pathways can result in increased levels of microalgal lipid accumulation.


2021 ◽  
Vol 13 (24) ◽  
pp. 13919
Author(s):  
Maria Dyah Nur Meinita ◽  
Amron Amron ◽  
Agus Trianto ◽  
Dicky Harwanto ◽  
Wahyu Caesarendra ◽  
...  

The development of macroalgal biorefinery products as an alternative source of renewable fuels is an opportunity to solve the dependence on fossil fuels. Macroalgae is a potential biomass that can be developed as a raw material for producing platform chemicals such as levulinic acid (LA). In the industrial sector, LA is among the top 12 biomass-derived feedstocks designated by the U.S. Department of Energy as a high-value chemical. Several studies have been conducted on the production of LA from terrestrial-based biomass, however, there is still limited information on its production from macroalgae. The advantages of macroalgae over terrestrial and other biomasses include high carbohydrate and biomass production, less cultivation cost, and low lignin content. Therefore, this study aims to investigate the potential and challenge of producing LA from macroalgae in the industrial sector and determine its advantages and disadvantages compared with terrestrial biomass in LA production. In this study, various literature sources were examined using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) method to identify, screen, and analyze the data of the published paper. Despite its advantages, there are some challenges in making the production of levulinic acid from macroalgae feasible for development at the industrial scale. Some challenges such as sustainability of macroalgae, the efficiency of pretreatment, and hydrolysis technology are often encountered during the production of levulinic acid from macroalgae on an industrial scale.


2019 ◽  
Vol 12 (5) ◽  
pp. 134-155
Author(s):  
A. A. Pakina ◽  
V. A. Gorbanyov

Transition of the world development to the post-industrial phase is accompanied by the global challenges, which could be solved within the "green economy". The basic principles of a "green economy" (GE) correspond to the concepts of balanced development and of rational nature use: the "green economy's" concept focuses on the idea of living standards improvement and economic growth while reducing the environmental damage. The indicators of GE reflect the complexity of the integrated assessment of economic, environmental and social outcomes. Since the common approach to such assessment has not yet been adopted, the development of global and national economies is often compared with the dynamics of their energy or resource intensity. This approach allows to take into account the "life cycle" of products and to allocate the responsibility of countries for environmental damage. Foreign experience can be used to implement the ideas of GE in Russia and CIS countries. Most experts are sceptical about these prospects due to its dependence on fossil fuels. Nevertheless, the experience of some regions of Russia and Kazakhstan shows the viability of strategies based on the renewable energy sources. Elaboration of financing mechanisms for "green" development is equally important. Such mechanisms must be adapted to meet the environmental needs of society, with attention to the losses from natural disasters and environmental damage. Today, national environmental management strategies are based on the transition to a resource-efficient low-carbon economy, and contribute a lot to the search for opportunities for the practical implementation of this concept.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 812
Author(s):  
Hoang Chinh Nguyen ◽  
My-Linh Nguyen ◽  
Chia-Hung Su ◽  
Hwai Chyuan Ong ◽  
Horng-Yi Juan ◽  
...  

Biodiesel is a promising alternative to fossil fuels and mainly produced from oils/fat through the (trans)esterification process. To enhance the reaction efficiency and simplify the production process, various catalysts have been introduced for biodiesel synthesis. Recently, the use of bio-derived catalysts has attracted more interest due to their high catalytic activity and ecofriendly properties. These catalysts include alkali catalysts, acid catalysts, and enzymes (biocatalysts), which are (bio)synthesized from various natural sources. This review summarizes the latest findings on these bio-derived catalysts, as well as their source and catalytic activity. The advantages and disadvantages of these catalysts are also discussed. These bio-based catalysts show a promising future and can be further used as a renewable catalyst for sustainable biodiesel production.


2021 ◽  
Vol 13 (11) ◽  
pp. 6074
Author(s):  
Esther Khayanga Sumbule ◽  
Mary Kivali Ambula ◽  
Isaac Maina Osuga ◽  
Janice Ghemoh Changeh ◽  
David Miano Mwangi ◽  
...  

The acceptance of eco-friendly black soldier fly larvae meal (BSFLM) as sustainable alternative protein ingredient in poultry feeds continues to gain momentum worldwide. This study evaluates the impact of BSFLM in layer chick and grower diets on the growth, carcass quality and economic returns. Mean weekly weight gain and total live weight per chick and grower varied significantly. The highest final weight gain was achieved when birds were provided diet with 25.6% BSFLM. Average daily feed intake (ADFI), average daily weight gain (ADG) and overall weight gain of the chick varied significantly, except for the feed conversion ratio (FCR). For grower birds, ADFI, ADG, FCR and overall weight gain did not vary significantly across the various feeding regimes. The weight of the wings and drumsticks had a quadratic response with a maximum weight obtained at 33% inclusion of BSFLM. The weight of the internal organs were not significantly affected by dietary types. Positive cost–benefit ratio and return on investment was recorded for diet types with higher BSFLM inclusion levels (>75%). Diets with 25% and 100% BSFLM inclusion were the most suitable and cost-effective, respectively. Thus, BSFLM represents a promising alternative source of protein that could be sustainably used in the poultry industries.


RSC Advances ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 87-113
Author(s):  
Rami J. Batrice ◽  
John C. Gordon

Solar energy has been used for decades for the direct production of electricity in various industries and devices. However, harnessing and storing this energy in the form of chemical bonds has emerged as a promising alternative to fossil fuels.


2021 ◽  
Vol 50 (4-5) ◽  
pp. 433-444
Author(s):  
Olusola Joshua Olujobi ◽  
Temilola Olusola-Olujobi

Fossil fuels have been the mainstream of energy supply and a major source of foreign exchange earnings for the Federal Government of Nigeria, in spite of being an unrenewable and unsustainable source of energy. Nigeria is yet to tap into the full benefits after privatising its power sector, including the new global evolution in the energy sector and the resulting increasing demand for renewable energy sources, which some consider to be cheaper and more environmentally friendly than fossil fuels and their allied products. Energy security is a challenge to socio-economic development in Nigeria, due to the country’s over-dependency on fossil fuels. In terms of their impact and the potentials to preserve energy sources for longevity and sustainability, however, fossil fuels will come to be seen as an out-dated alternative in the power sector as the energy industry evolves. The implications for Nigeria’s oil sector will not be limited to dwindling crude oil prices. The concerns include poor energy utilisation in Nigeria and the need to promote energy efficiency and sustainability. They have led to the formulation of new energy policies around the world to serve as a vehicle for translating solutions into reality. This study has adopted a library-based legal research method with a comparative approach. The study reveals that it is the lack of a coherent legal framework with incentives for using renewable energy that is largely seen as the key issue causing slow uptake of renewable energy as an alternative source of energy in Nigeria. As well as the need for a coherent legal framework on energy and incentives for using renewable energy sources, the study advocates stringent enforcement of existing energy regulatory policies.


2012 ◽  
pp. 33-51
Author(s):  
AKM Iftekharul Islam

A significant geopolitical consequence of the demise of the Soviet Union1 in the international arena is the rise of intense political and commercial competition for control of the vast energy resources of the newly independent and vulnerable states of the Caucasus and Central Asia. These energy resources and, in particular, the oil and natural gas deposits have now become the apple of discord in Central Asia introducing a new chapter in the Great Game of control over Eurasia (Hill 1997: 200). The region has great energy potential and is strategically important. The United States has varied and at times competing interests in Central Asia. In the past few years, real and present dangers to the U.S. national security especially Islamist terrorism and threats to the energy supply, have affected the U.S. policy in Central Asia. The region, which includes the five post-Soviet states of Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan, as well as Afghanistan and the Caspian basin, plays an important part in the U.S. global strategy in view of its proximity to Russia, China, India, Pakistan, Iran, and other key regional actors. No less important are its ethno-religious composition and vast deposits of oil, gas, coal, and uranium. Literally, the U.S. interests in Central Asia can be summarized in three simple words: security, energy, and democracy. Moreover, a key U.S. national security concern is the diversification of energy sources and the Caspian region is a significant alternative source of fossil fuels. In this article a critical analysis will be attempted on the U.S. policy and role in central Asia. DOI: http://dx.doi.org/10.3329/afj.v4i0.12931 The Arts Faculty Journal Vol.4 July 2010-June 2011 pp.33-51


Author(s):  
Ghazanfar Abbas ◽  
Rizwan Raza ◽  
Muhammad Ashraf Chaudhry ◽  
Bin Zhu

The entire world’s challenge is to find out the renewable energy sources due to rapid depletion of fossil fuels because of their high consumption. Solid Oxide Fuel Cells (SOFCs) are believed to be the best alternative source which converts chemical energy into electricity without combustion. Nanostructured study is required to develop highly ionic conductive electrolyte for SOFCs. In this work, the calcium doped ceria (Ce0.8Ca0.2O1.9) coated with 20% molar ratio of two alkali carbonates (CDC-M: MCO3, where M = Na and K) electrolyte was prepared by co-precipitation method in this study. Ni based electrode was used to fabricate the cell by dry pressing technique. The crystal structure and surface morphology was characterized by X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM) and High Resolution Transmission Electron Microscopy (HRTEM). The particle size was calculated in the range of 10–20nm by Scherrer’s formula and compared with SEM and TEM results. The ionic conductivity was measured by using AC Electrochemical Impedance Spectroscopy (EIS) method. The activation energy was also evaluated. The performance of the cell was measured 0.567W/cm2 at temperature 550°C with hydrogen as a fuel.


Sign in / Sign up

Export Citation Format

Share Document