scholarly journals Optimization of Grouting Material Mixture Ratio Based on Multi-Objective Optimization and Multi-Attribute Decision-Making

2021 ◽  
Vol 14 (1) ◽  
pp. 399
Author(s):  
Luchang Xiong ◽  
Zhaoyang Zhang ◽  
Zhijun Wan ◽  
Yuan Zhang ◽  
Ziqi Wang ◽  
...  

As a solid waste produced by coal combustion, fly ash will cause serious environmental pollution. However, it can be considered as a sustainable and renewable resource to replace partial cement in grouting materials. Fly ash grouting materials re-cement the broken rock mass and improve the mechanical properties of the original structure. It can reinforce the broken surrounding rock of mine roadway. The utilization of fly ash also reduces environmental pollution. Therefore, this paper establishes a new material mixture ratio optimization model to meet the requirement of material property through combining the methods of experimental design and numerical analysis. Based on the Box–Behnken design with 3 factors and 3 levels, a mathematical model is constructed to fit the nonlinear multiple regression functions between material properties and raw materials ratios. The influence of raw materials is analyzed on material properties (the material’s 7-day uniaxial compressive strength, initial setting time, and slurry viscosity). Then, 80 Pareto solutions are obtained through NASG-II algorithm which takes the regression functions as the objective functions for multi-objective optimization of the grouting material ratio. Finally, the best ratio solution of water-cement ratio—0.71, silica fume content—1.73%, and sodium silicate content—2.61% is obtained through the NNRP-TOPSIS method.

2020 ◽  
Author(s):  
Guorui Feng ◽  
Chenliang Hao ◽  
Pengfei Wang

Abstract Severe deformation and failure frequently occur in roadways with soft or weak surrounding rock and have greatly influenced safe and efficient mining of coal in many coal mines. Using portland cement, emery and fly ash as main raw materials, through laboratory tests, effect of water/binder ratio, cement/sand ratio, water/sodium silicate ratio, water reducing agent, fly ash/cement ratio and various performance indexes of grout of fluidity, viscosity, setting time, bleeding rate, compressive strength, concretion rate and various performance indexes were systematically analyzed. An optimized mixture ratio of the main raw materials added in the grouting material proportion was determined through uniform design method, an optimal mixture ratio was determined by regression analysis. The results show that: 1) The flow performance is significantly affected by change of sodium silicate and water reducer, the compressive strength of grouting material increases significantly with increase in emery content, and decreases significantly with increase in water reducer. 2) An optimized mixture ratio among water cement ratio, cement sand ratio, water/sodium silicate ratio, water reducing agent, fly ash/cement ratio in the grouting material is 0.75, 1.2, 8%, 3% and 0.18, respectively. Field test demonstrated that the material has better performance in reinforcing weak and broken rock mass.


2021 ◽  
Vol 1036 ◽  
pp. 319-326
Author(s):  
Hao Ran Duan ◽  
Peng Zhao ◽  
Lei Qin ◽  
Feng Jiao Shi

The engineering practice shows that the application of grouting technology to treat underground engineering has strong applicability and is one of the most commonly used technical means at present. Based on the underground engineering, this paper introduces the research achievements of grouting materials in recent years, including cement-based grouting materials, mixed grouting materials, anti-scouring grouting materials, and ultra-fine cement grouting materials. Current demand of grouting materials in underground engineering, there exists large dosage of cement, high content, high cost, serious environmental pollution problems, such as looking for alternatives or mixed with other raw materials for preparation of cementation material become the development trend, compared with the cement grouting material, chemical grouting material with higher performance, but in smaller projects within the scope of application. How to reduce the production cost of chemical grouting materials, simplify the production process, overcome the existing toxicity, reduce environmental pollution and improve the durability of solidified body has become the bottleneck of its popularization and application. Some achievements have been made in the modification of cement or chemical materials by nanometer components, but there is still a long way to go before the large-scale application of grouting engineering.


2021 ◽  
Vol 898 ◽  
pp. 27-33
Author(s):  
Petr Figala ◽  
Rostislav Drochytka ◽  
Vit Černý ◽  
Radek Hermann ◽  
Jiří Kolísko

This paper deals with the study of chemical resistance of new cement-based grout for invert grouting. The aim of this work is to verify new mixtures with specific admixtures. The study monitors resistance to external sulphate attack. Specimens were placed into sulphate solution 29.8 g∙l-1 (44 g∙l-1 Na2SO4) according to DIN19753 standard. Based on the results gained, new mixtures will be designed and optimized by addition of suitable secondary raw materials (fly ash, waste foundry sand, waste glass, waste filers).


Author(s):  
Mikuláš Adámek ◽  
Rastislav Toman

Range Extended Electric Vehicles (REEV) are still one of the suitable concepts for modern sustainable low emission vehicles. REEV is equipped with a small and lightweight unit, comprised usually of an internal combustion engine with an electric generator, and has thus the technical potential to overcome the main limitations of a pure electric vehicle – range anxiety, overall driving range, heating, and air-conditioning demands – using smaller battery: saving money, and raw materials. Even though several REx ICE concepts were designed in past, most of the available studies lack more complex design and optimization approach, not exploiting the advantageous single point operation of these engines. Resulting engine designs are usually rather conservative, not optimized for the best efficiency. This paper presents a multi-parametric and multi-objective optimization approach, that is applied on a REx ICE. Our optimization toolchain combines a parametric GT-Suite ICE simulation model, modeFRONTIER optimization software with various optimization strategies, and a parametric CAD model, that first provides some simulation model inputs, and second also serves for the final designs’ feasibility check. The chosen ICE concept is a 90 degrees V-twin engine, four-stroke, spark-ignition, naturally aspirated, port injected, OHV engine. The optimization goal is to find the thermodynamic optima for three different design scenarios of our concept – three different engine displacements – addressing the compactness requirement of a REx ICE. The optimization results show great fuel efficiency potential by applying our optimization methodology, following the general trends in increasing ICE efficiency, and power for a naturally aspirated concept.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Wang Hongbo ◽  
Liu Rentai ◽  
Zhang Qingsong

The water-rich sand layer is a common source for underground engineering disasters. Considering the poor performance, high cost, and serious environmental pollution of conventional grouting materials, based on the requirements of environmental grouting treatment, a new type of environmental water-rich sand grouting material was proposed, which was mainly based on fly ash and cement and supplemented by water glass. The performance of the slurry was studied. The parameters such as the initial set time, the ratio of stone, and the compressive strength of the material under different water contents and fly ash contents were determined by experiments. The new grouting material was obtained with rapid setting, early strength, high ratio of stone formation, and strength, which were less affected by water content. The successful application of the new environmental grouting material in the Qingdao Metro not only ensures the safety of the project but also meets the requirements of environmental protection. It also verifies the scientificity of the material and will be useful for the innovation of the water-rich sand grouting material.


2015 ◽  
Vol 1088 ◽  
pp. 544-548 ◽  
Author(s):  
Jing Lei Dou ◽  
Jing Feng Dou ◽  
Yu Juan Guo

Water-irruption is the second to gas explosion of major security problems in coal mine. The grouting material is composed of fly ash and montmorillonite separately according to a certain proportion with pure cement material. On the site grouting test and compare the compressive strength of the stones of the body and the size of the diffusion radius, and compare the grouting materials with pure cement materials. Through the comparative and analysis, the reasonable grouting materials are choosen.


2012 ◽  
Vol 174-177 ◽  
pp. 460-463
Author(s):  
Jing Sun ◽  
Jing Shun Yuan ◽  
Xiao Hong Cong ◽  
Hong Bo Liu

For the quality control of commercial concrete, it is important to choose correct raw- material and mixture ratio. C40 and C50 concrete were prepared in dry and cold climate environment, using local raw materials and a large amount of fly ash. Specific researches were made about different kinds and dosage of superplasticizers on the slump of concrete, slump loss and the intensity of the impact. The results show that naphthalene series superplasticizer JK-2 and 30% of fly ash can ensure that slump of the mixture concrete reach more than 180mm, slump loss is less than 30mm in an hour, strength of hardened paste will not be reduced, and concrete can be prepared with low costs.


Sign in / Sign up

Export Citation Format

Share Document