Research on Grouting Materials for Underground Construction Projects

2021 ◽  
Vol 1036 ◽  
pp. 319-326
Author(s):  
Hao Ran Duan ◽  
Peng Zhao ◽  
Lei Qin ◽  
Feng Jiao Shi

The engineering practice shows that the application of grouting technology to treat underground engineering has strong applicability and is one of the most commonly used technical means at present. Based on the underground engineering, this paper introduces the research achievements of grouting materials in recent years, including cement-based grouting materials, mixed grouting materials, anti-scouring grouting materials, and ultra-fine cement grouting materials. Current demand of grouting materials in underground engineering, there exists large dosage of cement, high content, high cost, serious environmental pollution problems, such as looking for alternatives or mixed with other raw materials for preparation of cementation material become the development trend, compared with the cement grouting material, chemical grouting material with higher performance, but in smaller projects within the scope of application. How to reduce the production cost of chemical grouting materials, simplify the production process, overcome the existing toxicity, reduce environmental pollution and improve the durability of solidified body has become the bottleneck of its popularization and application. Some achievements have been made in the modification of cement or chemical materials by nanometer components, but there is still a long way to go before the large-scale application of grouting engineering.

2021 ◽  
Vol 14 (1) ◽  
pp. 399
Author(s):  
Luchang Xiong ◽  
Zhaoyang Zhang ◽  
Zhijun Wan ◽  
Yuan Zhang ◽  
Ziqi Wang ◽  
...  

As a solid waste produced by coal combustion, fly ash will cause serious environmental pollution. However, it can be considered as a sustainable and renewable resource to replace partial cement in grouting materials. Fly ash grouting materials re-cement the broken rock mass and improve the mechanical properties of the original structure. It can reinforce the broken surrounding rock of mine roadway. The utilization of fly ash also reduces environmental pollution. Therefore, this paper establishes a new material mixture ratio optimization model to meet the requirement of material property through combining the methods of experimental design and numerical analysis. Based on the Box–Behnken design with 3 factors and 3 levels, a mathematical model is constructed to fit the nonlinear multiple regression functions between material properties and raw materials ratios. The influence of raw materials is analyzed on material properties (the material’s 7-day uniaxial compressive strength, initial setting time, and slurry viscosity). Then, 80 Pareto solutions are obtained through NASG-II algorithm which takes the regression functions as the objective functions for multi-objective optimization of the grouting material ratio. Finally, the best ratio solution of water-cement ratio—0.71, silica fume content—1.73%, and sodium silicate content—2.61% is obtained through the NNRP-TOPSIS method.


2021 ◽  
pp. 1-44
Author(s):  
Yunxiao Liu ◽  
Jiahang Zhang ◽  
Yinyin Chi

In this study, three different diameters of multi-walled carbon nanotubes (MWCNTs) dispersed by polyvinyl pyrrolidone (PVP) were used to reinforce superfine cement grouting materials. The effect of MWCNTs and polyvinyl pyrrolidone (PVP) on the rheological properties of grouting material were accordingly studied. It was found that the yield stress (τ0) and plastic viscosity (η) were slightly decreased when PVP content was low and increased when the PVP content increased. The effect of MWCNT diameter on τ0 was not found to be clear but was more significant on η. The smaller MWCNT diameter was, the more quickly η increase. It was also found that the thixotropic ring area was increased as the MWCNTs content increased. The addition of PVP and MWCNTs caused an increase in the number of entanglement points in different scales, which was the main reason for the viscosity and thixotropy increase. Therefore, the rheological properties of superfine cement grouting material should be adjusted when MWCNTs were added as a reinforcing component. Due to the wrapping of PVP on cement particles which isolates the contacting part between the water and the cement particles, it slows down the cement's hydration rate thus slows down the fluidity loss of the slurry.


2013 ◽  
Vol 838-841 ◽  
pp. 1457-1462
Author(s):  
Chun Lei Xia ◽  
Ying Ye ◽  
Guan Ming Wang ◽  
Li Cui

Silty fine sand is the second smallest sand with a particle diameter ranging from 0.0625 to 0.120 mm.This kind of sand exists in a large amount in Beijing subway excavation project. Due to the poor self-stabilization of this stratum,seeping , sand flow and collapse take place frequently. Grouting materials such as Portland cement and soluble glass (also called sodium silicate) are employed in most of excavation projects to reinforce this sand stratum. However, the reinforcement is not effective, leading to a large amount of accidents in the process of construction. The reason may be attributed to the fact that Portland cement is unable to penetrate into the stratum and the strength of soluble glass (0.6MPa) is too weak to resist the stratum pressure. To solve this problem, a modified microfine cement grouting material able to penetrate into silty fine sand stratum is developed in this paper. A combination of suspension and diluent is used to increase the penetration extension of the grouts,and the experimental results reveal that the addition of the mixture of suspension and diluent in microfine cement grouting materials improves the penetration property substantially.


2011 ◽  
Vol 418-420 ◽  
pp. 139-142
Author(s):  
Li Guo ◽  
Bing Xie ◽  
Hong Fang Li

The application of grouting technology in the reinforcement and water shutoff of underground engineering is very extensive. The grouting technology mainly includes two aspects: grouting process and grouting material. The grouting material is a vital link in grouting. It affects the cost of construction directly, and determines the success or failure of the engineering. The smaller the molecular dimension of solution or solid particle dimension, the greater the scope that the grout can be injected into. And it is beneficial to the grouting effect. With the development of nanotechnology, the development of nanometer grouting materials is feasible, and is also a great breakthrough for the grouting technique.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yang Yu ◽  
Zhengyuan Qin ◽  
Xiangyu Wang ◽  
Lianying Zhang ◽  
Dingchao Chen ◽  
...  

It is very extraordinary for the success of coal mine roadway grouting with the following factors of high early strength, good fluidity, and convenient pumping, but the existing grouting materials make it difficult to achieve the above characteristics at the same time. Therefore, a modified grouting material is developed, which is composed of two kinds of dry materials A and B, which are mixed with water and in equal amounts. The physical and mechanical properties of modified grouting materials under different ratios were tested by laboratory orthogonal test, and the optimal ratio of grouting materials and additives was obtained: (1) the water-cement ratio is 0.8 : 1; (2) base material: the mass ratio of cement, fly ash, bentonite, and water is 1 : 0.3 : 0.1 : 1.44; (3) admixture: the mass ratio of water reducer C, accelerator D, and retarder E is 1.5% : 0.05% : 0.3%. The basic properties of the modified grouting materials were studied from the aspects of slurry flow state, diffusion range, and grouting parameters by using the numerical simulation method, and the reinforcement mechanism of slurry to the broken surrounding rock properties of the roadway was revealed: (1) the grouting pressure is the main factor affecting the slurry diffusion radius; (2) the mechanical properties of the roadway surrounding rock are improved, the plastic zone and deformation of surrounding rock are reduced, and the active support function of the anchor and cable is enhanced through grouting reinforcement; (3) the control effect of the roadway is improved, and the balanced bearing with anchorage structure of the roadway surrounding rock is realized through grouting reinforcement. On this basis, the modified grouting material is applied to roadway repair and reinforcement engineering practice. The field monitoring data show that the production practices were guided by roadway repair and reinforcement technology with the modified grouting material, as the core of the roadway surrounding rock control effect is good, and the modified grouting material has a wide range of application prospects.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6144
Author(s):  
Jiaolong Ren ◽  
Zedong Zhao ◽  
Yinshan Xu ◽  
Siyuan Wang ◽  
Haiwei Chen ◽  
...  

Cement grouting material is one of the most important materials in civil construction at present, for seepage prevention, rapid repair, and reinforcement. To achieve the ever-increasing functional requirements of civil infrastructures, cement grouting materials must have the specific performance of high fluidization, early strength, and low shrinkage. In recent years, nanomaterials have been widely used to improve the engineering performance of cement grouting materials. However, the mechanisms of nanomaterials in grouting materials are not clear. Hence, a high-fluidization, early strength cement grouting material, enhanced by nano-SiO2, is developed via the orthogonal experimental method in this study. The mechanisms of nano-SiO2 on the microstructure and hydration products of the HCGA, in the case of different curing ages and nano-SiO2 contents, are analyzed through scanning electron microscopy tests, X-ray diffraction tests, differential scanning calorimetry tests, and Fourier transform infrared spectroscopy tests.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Wang Hongbo ◽  
Liu Rentai ◽  
Zhang Qingsong

The water-rich sand layer is a common source for underground engineering disasters. Considering the poor performance, high cost, and serious environmental pollution of conventional grouting materials, based on the requirements of environmental grouting treatment, a new type of environmental water-rich sand grouting material was proposed, which was mainly based on fly ash and cement and supplemented by water glass. The performance of the slurry was studied. The parameters such as the initial set time, the ratio of stone, and the compressive strength of the material under different water contents and fly ash contents were determined by experiments. The new grouting material was obtained with rapid setting, early strength, high ratio of stone formation, and strength, which were less affected by water content. The successful application of the new environmental grouting material in the Qingdao Metro not only ensures the safety of the project but also meets the requirements of environmental protection. It also verifies the scientificity of the material and will be useful for the innovation of the water-rich sand grouting material.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3277
Author(s):  
Zhenhua Su ◽  
Zaiqin Wang ◽  
Da Zhang ◽  
Tao Wei

Epoxy resins are widely used for repairing cracks in stone, mortar and masonry. A main factor that influences the grouting quality is the permeability of grout. However, the permeability will deteriorate over time because of the reaction of chemical grouting materials, which will greatly affect the results of grouting. To the best of our knowledge, there are few reports that focus on the time-varying properties of viscosity and affinity of epoxy resins grouting material. In this paper, we investigate the changing rules of viscosity and affinity with time by studying the viscosity, surface tension and contact angle of the epoxy grouting material. We establish the mathematical model for the time-dependent properties of CW epoxy resin on viscosity and affinity with experimental verification. Moreover, we make a detailed discussion on the modeling of viscosity variation considering both time and temperature. The results show important guiding significance and application value for judging the grout irrigability in the construction process.


2014 ◽  
pp. 97-104 ◽  
Author(s):  
Electo Eduardo Silv Lora ◽  
Mateus Henrique Rocha ◽  
José Carlos Escobar Palacio ◽  
Osvaldo José Venturini ◽  
Maria Luiza Grillo Renó ◽  
...  

The aim of this paper is to discuss the major technological changes related to the implementation of large-scale cogeneration and biofuel production in the sugar and alcohol industry. The reduction of the process steam consumption, implementation of new alternatives in driving mills, the widespread practice of high steam parameters use in cogeneration facilities, the insertion of new technologies for biofuels production (hydrolysis and gasification), the energy conversion of sugarcane trash and vinasse, animal feed production, process integration and implementation of the biorefinery concept are considered. Another new paradigm consists in the wide spreading of sustainability studies of products and processes using the Life Cycle Assessment (LCA) and the implementation of sustainability indexes. Every approach to this issue has as an objective to increase the economic efficiency and the possibilities of the sugarcane as a main source of two basic raw materials: fibres and sugar. The paper briefly presents the concepts, indicators, state-of-the-art and perspectives of each of the referred issues.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1755
Author(s):  
Shuo Wang ◽  
Chenfeng Cui ◽  
Qin Dai

Since the early 2000s, the vegetation cover of the Loess Plateau (LP) has increased significantly, which has been fully recorded. However, the effects on relevant eco-hydrological processes are still unclear. Here, we made an investigation on the changes of actual evapotranspiration (ETa) during 2000–2018 and connected them with vegetation greening and climate change in the LP, based on the remote sensing data with correlation and attribution analysis. Results identified that the average annual ETa on the LP exhibited an obvious increasing trend with the value of 9.11 mm yr−1, and the annual ETa trend was dominated by the changes of ETa in the third quarter (July, August, and September). The future trend of ETa was predicted by the Hurst exponent. Partial correlation analysis indicated that annual ETa variations in 87.8% regions of the LP were controlled by vegetation greening. Multiple regression analysis suggested that the relative contributions of potential evapotranspiration (ETp), precipitation, and normalized difference vegetation index (NDVI), to the trend of ETa were 5.7%, −26.3%, and 61.4%, separately. Vegetation greening has a close relationship with the Grain for Green (GFG) project and acts as an essential driver for the long-term development trend of water consumption on the LP. In this research, the potential conflicts of water demanding between the natural ecosystem and social-economic system in the LP were highlighted, which were caused by the fast vegetation expansion.


Sign in / Sign up

Export Citation Format

Share Document