scholarly journals Handcrafted versus CNN Features for Ear Recognition

Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1493 ◽  
Author(s):  
Hammam Alshazly ◽  
Christoph Linse ◽  
Erhardt Barth ◽  
Thomas Martinetz

Ear recognition is an active research area in the biometrics community with the ultimate goal to recognize individuals effectively from ear images. Traditional ear recognition methods based on handcrafted features and conventional machine learning classifiers were the prominent techniques during the last two decades. Arguably, feature extraction is the crucial phase for the success of these methods due to the difficulty in designing robust features to cope with the variations in the given images. Currently, ear recognition research is shifting towards features extracted by Convolutional Neural Networks (CNNs), which have the ability to learn more specific features robust to the wide image variations and achieving state-of-the-art recognition performance. This paper presents and compares ear recognition models built with handcrafted and CNN features. First, we experiment with seven top performing handcrafted descriptors to extract the discriminating ear image features and then train Support Vector Machines (SVMs) on the extracted features to learn a suitable model. Second, we introduce four CNN based models using a variant of the AlexNet architecture. The experimental results on three ear datasets show the superior performance of the CNN based models by 22%. To further substantiate the comparison, we perform visualization of the handcrafted and CNN features using the t-distributed Stochastic Neighboring Embedding (t-SNE) visualization technique and the characteristics of features are discussed. Moreover, we conduct experiments to investigate the symmetry of the left and right ears and the obtained results on two datasets indicate the existence of a high degree of symmetry between the ears, while a fair degree of asymmetry also exists.

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1678
Author(s):  
Panayu Keelawat ◽  
Nattapong Thammasan ◽  
Masayuki Numao ◽  
Boonserm Kijsirikul

Emotion recognition based on electroencephalograms has become an active research area. Yet, identifying emotions using only brainwaves is still very challenging, especially the subject-independent task. Numerous studies have tried to propose methods to recognize emotions, including machine learning techniques like convolutional neural network (CNN). Since CNN has shown its potential in generalization to unseen subjects, manipulating CNN hyperparameters like the window size and electrode order might be beneficial. To our knowledge, this is the first work that extensively observed the parameter selection effect on the CNN. The temporal information in distinct window sizes was found to significantly affect the recognition performance, and CNN was found to be more responsive to changing window sizes than the support vector machine. Classifying the arousal achieved the best performance with a window size of ten seconds, obtaining 56.85% accuracy and a Matthews correlation coefficient (MCC) of 0.1369. Valence recognition had the best performance with a window length of eight seconds at 73.34% accuracy and an MCC value of 0.4669. Spatial information from varying the electrode orders had a small effect on the classification. Overall, valence results had a much more superior performance than arousal results, which were, perhaps, influenced by features related to brain activity asymmetry between the left and right hemispheres.


2019 ◽  
Vol 59 (6) ◽  
pp. 1044-1060
Author(s):  
Vu Thi Thao ◽  
Widar von Arx ◽  
Jonas Frölicher

Despite a growing body of research on the interface and relationship between transport and tourism, this research area remains undeveloped. Using Switzerland as a case study, the present study aims to investigate the level of integration between public transport and tourism companies, the enablers of their long-term cooperative relationship and outstanding performance, seen from the perspective of the public transport companies. A mixed methods approach is used to provide greater insights into how these companies cooperate with each other. Our findings suggest that public transport companies adopt different cooperative strategies with different types of partners. They are able to maintain long-term cooperative relationships due to strong cooperation in sales, a long tradition of cooperation, a high degree of involvement in national public organizations, and their central focus on the customer. Type of partner, sales, product design and pricing, and service provision have statistically significant effects on cooperative performance.


Author(s):  
Mohamed Loey ◽  
Mukdad Rasheed Naman ◽  
Hala Helmy Zayed

Blood disease detection and diagnosis using blood cells images is an interesting and active research area in both the computer and medical fields. There are many techniques developed to examine blood samples to detect leukemia disease, these techniques are the traditional techniques and the deep learning (DL) technique. This article presents a survey on the different traditional techniques and DL approaches that have been employed in blood disease diagnosis based on blood cells images and to compare between the two approaches in quality of assessment, accuracy, cost and speed. This article covers 19 studies, 11 of these studies were in traditional techniques which used image processing and machine learning (ML) algorithms such as K-means, K-nearest neighbor (KNN), Naïve Bayes, Support Vector Machine (SVM), and 8 studies in advanced techniques which used DL, particularly Convolutional Neural Networks (CNNs) which is the most widely used in the field of blood image diseases detection since it is highly accurate, fast, and has the least cost. In addition, it analyzes a number of recent works that have been introduced in the field including the size of the dataset, the used methodologies, the obtained results, etc. Finally, based on the conducted study, it can be concluded that the proposed system CNN was achieving huge successes in the field whether regarding features extraction or classification task, time, accuracy, and had a lower cost in the detection of leukemia diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lin Chen ◽  
Peng Zhan ◽  
Luhui Cao ◽  
Xueqing Li

A multiview synthetic aperture radar (SAR) target recognition with discrimination and correlation analysis is proposed in this study. The multiple views are first prescreened by a support vector machine (SVM) to select out those highly discriminative ones. These views are then clustered into several view sets, in which images share high correlations. The joint sparse representation (JSR) is adopted to classify SAR images in each view set, and all the decisions from different view sets are fused using a linear weighting strategy. The proposed method makes more sufficient analysis of the multiview SAR images so the recognition performance can be effectively enhanced. To test the proposed method, experiments are set up based on the moving and stationary target acquisition and recognition (MSTAR) dataset. The results show that the proposed method could achieve superior performance under different situations over some compared methods.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaoqiang Li ◽  
Yi Zhang ◽  
Dong Liao

Human action recognition based on 3D skeleton has become an active research field in recent years with the recently developed commodity depth sensors. Most published methods analyze an entire 3D depth data, construct mid-level part representations, or use trajectory descriptor of spatial-temporal interest point for recognizing human activities. Unlike previous work, a novel and simple action representation is proposed in this paper which models the action as a sequence of inconsecutive and discriminative skeleton poses, named as key skeleton poses. The pairwise relative positions of skeleton joints are used as feature of the skeleton poses which are mined with the aid of the latent support vector machine (latent SVM). The advantage of our method is resisting against intraclass variation such as noise and large nonlinear temporal deformation of human action. We evaluate the proposed approach on three benchmark action datasets captured by Kinect devices: MSR Action 3D dataset, UTKinect Action dataset, and Florence 3D Action dataset. The detailed experimental results demonstrate that the proposed approach achieves superior performance to the state-of-the-art skeleton-based action recognition methods.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Joseph J. LaViola

3D gestural interaction provides a powerful and natural way to interact with computers using the hands and body for a variety of different applications including video games, training and simulation, and medicine. However, accurately recognizing 3D gestures so that they can be reliably used in these applications poses many different research challenges. In this paper, we examine the state of the field of 3D gestural interfaces by presenting the latest strategies on how to collect the raw 3D gesture data from the user and how to accurately analyze this raw data to correctly recognize 3D gestures users perform. In addition, we examine the latest in 3D gesture recognition performance in terms of accuracy and gesture set size and discuss how different applications are making use of 3D gestural interaction. Finally, we present ideas for future research in this thriving and active research area.


Author(s):  
SAVITHA SIVAN ◽  
THUSNAVIS BELLA MARY. I

Content-based image retrieval (CBIR) is an active research area with the development of multimedia technologies and has become a source of exact and fast retrieval. The aim of CBIR is to search and retrieve images from a large database and find out the best match for the given query. Accuracy and efficiency for high dimensional datasets with enormous number of samples is a challenging arena. In this paper, Content Based Image Retrieval using various features such as color, shape, texture is made and a comparison is made among them. The performance of the retrieval system is evaluated depending upon the features extracted from an image. The performance was evaluated using precision and recall rates. Haralick texture features were analyzed at 0 o, 45 o, 90 o, 180 o using gray level co-occurrence matrix. Color feature extraction was done using color moments. Structured features and multiple feature fusion are two main technologies to ensure the retrieval accuracy in the system. GIST is considered as one of the main structured features. It was experimentally observed that combination of these techniques yielded superior performance than individual features. The results for the most efficient combination of techniques have also been presented and optimized for each class of query.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jixiang Zhang ◽  
Chengqin Wu ◽  
Chenzhao Ruan ◽  
Rongxia Zhang ◽  
Zengshun Zhao ◽  
...  

At present, cardiovascular disease is regarded as one of the dangerous diseases that threaten human life. The morbidity and lethality caused by cardiovascular disease are constantly increasing every year. In this paper, we propose a two-stream style operation to handle the electrocardiogram (ECG) classification: one for time-domain features and another for frequency-domain features. For the time-domain features, convolutional neural networks (CNN) are constructed for feature learning and classification of ECG signals. For the frequency-domain features, support vector regression (SVR) machines are designed to perform the regression prediction on each signal. Finally, the D-S evidence theory is adopted to perform the decision fusion strategy on the time-domain and frequency-domain classification results. We confirm a recognition performance of 99.64% from the experiment result for the D-S evidence theory recognition system upon the MIT-BIH arrhythmia database. The analysis of various methods of ECG classification shows that the model delivers superior performance promotion across all these scenarios.


2019 ◽  
Vol 1 (2) ◽  
pp. 611-629 ◽  
Author(s):  
Muhammad Asif Manzoor ◽  
Yasser Morgan ◽  
Abdul Bais

A Vehicle Make and Model Recognition (VMMR) system can provide great value in terms of vehicle monitoring and identification based on vehicle appearance in addition to the vehicles’ attached license plate typical recognition. A real-time VMMR system is an important component of many applications such as automatic vehicle surveillance, traffic management, driver assistance systems, traffic behavior analysis, and traffic monitoring, etc. A VMMR system has a unique set of challenges and issues. Few of the challenges are image acquisition, variations in illuminations and weather, occlusions, shadows, reflections, large variety of vehicles, inter-class and intra-class similarities, addition/deletion of vehicles’ models over time, etc. In this work, we present a unique and robust real-time VMMR system which can handle the challenges described above and recognize vehicles with high accuracy. We extract image features from vehicle images and create feature vectors to represent the dataset. We use two classification algorithms, Random Forest (RF) and Support Vector Machine (SVM), in our work. We use a realistic dataset to test and evaluate the proposed VMMR system. The vehicles’ images in the dataset reflect real-world situations. The proposed VMMR system recognizes vehicles on the basis of make, model, and generation (manufacturing years) while the existing VMMR systems can only identify the make and model. Comparison with existing VMMR research demonstrates superior performance of the proposed system in terms of recognition accuracy and processing speed.


Sentiment Analysis is the Natural Language Processing (NLP) is the active research area due to its vast application like stock market prediction, product re-views etc. The sentiment analysis in the regional languages are required for the film industries to increase their profit. Many existing methods has been applied on the sentiment analysis in the regional languages to increases the performance and still, it lags due in efficiency. In this research, the Bi-directional Recurrent Neural Network (BRNN) is applied to increase the performance of the sentiment analysis in the regional languages. The BRNN method has the advantages of rep-resenting the high and poor resources sentences in the common space and sentiment is analyzed based on the similarity measure. The proposed method is evaluated on the twitter data and compared this with the existing methods such as Random forest and Support Vector Machine (SVM). The proposed BRNN has the overall accuracy of 50.32%, while existing method of SVM has the overall accuracy of 38.73%.


Sign in / Sign up

Export Citation Format

Share Document