scholarly journals Effect of Exposure of Plastic Infant Feeding Bottle Leached Water on Biochemical, Morphological and Oxidative Stress Parameters in Rats

Toxics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 34
Author(s):  
Mahendra K. Pant ◽  
Abul H. Ahmad ◽  
Manisha Naithani ◽  
Hari S. Pandey ◽  
Monika Pandey ◽  
...  

Bisphenol A (BPA) is leached out from plastic infant feeding bottles that are filled with warm milk/water due to high temperatures, exposing the infants to BPA. The present study aims to understand the effects of ingestion of BPA leached from plastic infant feeding bottle and delineate the underlying mechanisms in rats. In this study, adult rats of Wistar strain were divided into 3 groups. In the first group, the rats consumed normal food and tap water ad libitum. In the second group, the rats ingested BPA (20 µg/kg bodyweight/day, orally). In the third group, the rats drank water leached from plastic infant feeding bottles. After 30days, tests involving biochemical parameters, histopathological examination, and oxidative stress enzyme markers were performed, and the levels of BPA in plastic-leached water were estimated by HPLC analysis. There were significant biochemical changes in the form of increased alkaline phosphatase (ALP), creatine kinase-muscle/brain (CK-MB), and lactate dehydrogenase (LDH) levels in both treated groups as compared to control group, accompanied by structural damage to the vital organs, and lipid peroxidation, glutathione reductase, and catalase activity were also high in the treated groups. Further, the BPA concentration in plastic leached water was estimated to be 0.1 ± 0.02 µg/mL.

2009 ◽  
Vol 2 (2) ◽  
pp. 73-81 ◽  
Author(s):  
Adel R. A. Abd-Allah ◽  
Gouda K. Helal ◽  
Abdulaziz A. Al-Yahya ◽  
Abdulaziz M. Aleisa ◽  
Salim S. Al-Rejaie ◽  
...  

The testis is an immunologically privileged organ. Sertoli cells can form a blood-testis barrier and protect sperm cells from self-immune system attacks. Spermatogenesis may be inhibited by severe illness, bacterial infections and chronic inflammatory diseases but the mechanism(s) is poorly understood. Our objective is to help in understanding such mechanism(s) to develop protective agents against temporary or permanent testicular dysfunction. Lipopolysaccaride (LPS) is used as a model of animal sepsis while L-carnitine (LCR) is used as a protective agent. A total of 60 male Swiss albino rats were divided into four groups (15/group). The control group received Saline; the 2ndgroup was given LCR (500 mg/kg i.p, once). The third group was treated with LPS (5 mg/kg i.p once) and the fourth group received LCR then LPS after three hours. From each group, five rats were used for histopathological examination. Biochemical parameters were assessed in the remaining ten rats. At the end of the experiment, animals were lightly anaesthetized with ether where blood samples were collected and testes were dissected on ice. Sperm count and motility were evaluated from cauda epididymis in each animal. Also, oxidative stress was evaluated by measuring testicular contents of reduced glutathione (GSH), malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-HDG, the DNA adduct for oxidative damage) in testicular DNA. The pro-inflammatory mediator nitric oxide (NO) in addition to lactate dehydrogenase (LDHx) isoenzyme-x activity as an indicator for normal spermatozoal metabolism were assessed in testicular homogenate. Serum interlukin (IL)-2 level was also assessed as a marker for T-helper cell function. The obtained data revealed that LPS induced marked reductions in sperm's count and motility, obstruction in seminiferous tubules, hypospermia and dilated congested blood vessels in testicular sections concomitant with decreased testicular GSH content and LDHx activity. Moreover, the testicular levels of MDA, 8-HDG (in testicular DNA) and NO as well as serum IL-2 level were increased. Administration of LCR before LPS returned both sperm count and motility to normal levels. Also, contents of testicular GSH, MDA, 8-HDG and NO returned back to the corresponding control values. In addition, serum IL-2 level as well as histological abnormalities were markedly improved in LCR + LPS-treated rats. In conclusion, LPS increased proinflammatory and oxidative stress markers in the testis leading to a marked testicular dysfunction. L-carnitine administration ameliorates these effects by antioxidant and/or anti-inflammatory mechanisms suggesting a protective role against male infertility in severely infected or septic patients.


2017 ◽  
Vol 37 (9) ◽  
pp. 983-990 ◽  
Author(s):  
MG Helal ◽  
SE Ayoub ◽  
WF Elkashefand ◽  
TM Ibrahim

The incidence of nonalcoholic fatty liver disease (NAFLD) is considered a risk factor for hepatic fibrosis. Therefore, there is critical need to develop novel cheap and effective therapeutic approaches to prevent and reverse NAFLD. Caffeine is commonly consumed beverage and has antioxidant and anti-inflammatory activities. This study examined whether caffeine can ameliorate liver injury induced by high-fat diet (HFD) feeding. Four groups of rats were used and treated for 16 weeks as follows: control group, rats were fed a standard diet; HFD group, rats were fed HFD; and caffeine 20 and caffeine 30 groups, rats were fed HFD for 16 weeks in addition to different doses of caffeine (20 or 30 mg/kg, respectively) for last 8 weeks. The HFD-induced liver injury is determined biochemically by evaluating serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin, bilirubin, triglycerides, cholesterol, and high-density lipoprotein-cholesterol and by histopathological examination. Tissue malondialdehyde, total nitrate/nitrite, and glutathione concentration were also measured. Real-time reverse transcription polymerase chain reaction technique was used to determine the expression of lipogenic enzyme genes. Caffeine treatment significantly decreased the elevated serum ALT, AST, and bilirubin and increased the reduced albumin level. Interestingly, the hepatic mRNA expression of Fatty acid synthase and acetyl CoA carboxylase was decreased by caffeine, while the protein expression of hepatic carnitine palmitoyltransferase 1 and proliferation-activated receptor α was increased. Furthermore, caffeine reduced tissue lipid peroxidation and oxidative stress. These effects suggest that caffeine could improve HFD-induced hepatic injury by suppressing inflammatory response and oxidative stress and regulating hepatic de novo lipogenesis and β-oxidation.


2020 ◽  
Vol 26 (4) ◽  
pp. 432-447
Author(s):  
Tala Pourlak ◽  
◽  
Monireh Halimi ◽  
Tannaz Pourlak ◽  
Parham Maroufi ◽  
...  

Aims: In this study, we investigated the effect of clove extract (Syzygium aromaticum) on liver cell damage and oxidative stress caused by diabetes in adult rats. Methods & Materials: For this study, 28 female rats were collected and divided into four groups: A: Control group; B: Diabetic Control group (DC) which received 20% glycerol dissolved in normal saline as carriers; C: Diabetic rats (DSA) treated with cloves hydroalcoholic extract (4 mg/kg); d) diabetic rats (DG) treated with glibenclamide (5 mg/kg) as a standard drug. Findings: The fasting blood sugar and serum triglyceride levels in the DC group increased significantly compared to the control group (P<0.05). In DC, DG, and DSA groups, high-density lipoprotein, and serum insulin levels decreased significantly compared to the control group (P<0.05). Also, in DG and DSA groups, high-density lipoprotein and serum insulin levels increased significantly compared to the DC group. Conclusion: Cloves can affect fasting blood sugar, serum insulin levels, serum fat profile levels, and prevent liver tissue damage in diabetic rats caused by streptozotocin.


2020 ◽  
Vol 20 (7) ◽  
pp. 1117-1132
Author(s):  
Abdelaziz M. Hussein ◽  
Elsayed A. Eid ◽  
Ismaeel Bin-Jaliah ◽  
Medhat Taha ◽  
Lashin S. Lashin

Background and Aims: In the current work, we studied the effects of exercise and stevia rebaudiana (R) extracts on diabetic cardiomyopathy (DCM) in type 2 diabetic rats and their possible underlying mechanisms. Methods: : Thirty-two male Sprague Dawley rats were randomly allocated into 4 equal groups; a) normal control group, b) DM group, type 2 diabetic rats received 2 ml oral saline daily for 4 weeks, c) DM+ Exercise, type 2 diabetic rats were treated with exercise for 4 weeks and d) DM+ stevia R extracts: type 2 diabetic rats received methanolic stevia R extracts. By the end of the experiment, serum blood glucose, HOMA-IR, insulin and cardiac enzymes (LDH, CK-MB), cardiac histopathology, oxidative stress markers (MDA, GSH and CAT), myocardial fibrosis by Masson trichrome, the expression of p53, caspase-3, α-SMA and tyrosine hydroxylase (TH) by immunostaining in myocardial tissues were measured. Results: T2DM caused a significant increase in blood glucose, HOMA-IR index, serum CK-MB and LDH, myocardial damage and fibrosis, myocardial MDA, myocardial α-SMA, p53, caspase-3, Nrf2 and TH density with a significant decrease in serum insulin and myocardial GSH and CAT (p< 0.05). On the other hand, treatment with either exercise or stevia R extracts significantly improved all studied parameters (p< 0.05). Moreover, the effects of stevia R was more significant than exercise (p< 0.05). Conclusion: Both exercise and methanolic stevia R extracts showed cardioprotective effects against DCM and Stevia R offered more cardioprotective than exercise. This cardioprotective effect of these lines of treatment might be due to attenuation of oxidative stress, apoptosis, sympathetic nerve density and fibrosis and upregulation of the antioxidant transcription factor, Nrf2.


2020 ◽  
Vol 20 (4) ◽  
pp. 584-590 ◽  
Author(s):  
Shima Fathi ◽  
Shiva Borzouei ◽  
Mohammad Taghi Goodarzi ◽  
Jalal Poorolajal ◽  
Fatemeh Ahmadi-Motamayel

Background: Diabetes Mellitus (DM) is a progressive metabolic disorder. Objective: The aim of this study was to investigate the relationship between antioxidant and oxidative stress markers in the saliva of patients with type 2 DM and a healthy control group. Methods: In this study, 20 patients with diabetes and 20 healthy individuals were evaluated. Salivary antioxidants markers consisted of total antioxidant capacity (TAC), uric acid (UA), peroxidase and catalase. Oxidative stress markers included total oxidant status (TOS), malondealdehyde (MDA) and total thiol (SH). Sialochemical analysis was performed with spectrophotometric assay. All the statistical analyses were conducted using STATA software. Results: TAC decreased significantly in patients with diabetes. Although salivary UA and peroxidase were lower in patients with diabetes compared to the control group, the difference was not significant. Salivary catalase in patients with diabetes was significantly lower than that in the control group. MDA and TOS exhibited significantly higher levels in type 2 DM. SH levels were slightly higher in DM. Conclusions: According to the results of the present study, there were some changes in the salivary levels of some antioxidants and oxidative stress markers in patients with type 2 DM and could be measured as an indicator of serum changes..


Author(s):  
Hong Wang ◽  
Wenjuan Zhang ◽  
Jinren Liu ◽  
Junhong Gao ◽  
Le Fang ◽  
...  

Abstract Blast lung injury (BLI) is the major cause of death in explosion-derived shock waves; however, the mechanisms of BLI are not well understood. To identify the time-dependent manner of BLI, a model of lung injury of rats induced by shock waves was established by a fuel air explosive. The model was evaluated by hematoxylin and eosin staining and pathological score. The inflammation and oxidative stress of lung injury were also investigated. The pathological scores of rats’ lung injury at 2 h, 24 h, 3 days, and 7 days post-blast were 9.75±2.96, 13.00±1.85, 8.50±1.51, and 4.00±1.41, respectively, which were significantly increased compared with those in the control group (1.13±0.64; P&lt;0.05). The respiratory frequency and pause were increased significantly, while minute expiratory volume, inspiratory time, and inspiratory peak flow rate were decreased in a time-dependent manner at 2 and 24 h post-blast compared with those in the control group. In addition, the expressions of inflammatory factors such as interleukin (IL)-6, IL-8, FosB, and NF-κB were increased significantly at 2 h and peaked at 24 h, which gradually decreased after 3 days and returned to normal in 2 weeks. The levels of total antioxidant capacity, total superoxide dismutase, and glutathione peroxidase were significantly decreased 24 h after the shock wave blast. Conversely, the malondialdehyde level reached the peak at 24 h. These results indicated that inflammatory and oxidative stress induced by shock waves changed significantly in a time-dependent manner, which may be the important factors and novel therapeutic targets for the treatment of BLI.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 926
Author(s):  
Toshio Fumoto ◽  
Shouhei Kinoshita ◽  
Takao Sasaki ◽  
Norihito Shimamura ◽  
Hiroki Ohkuma

Vascular tortuosity is associated with various disorders and is being increasingly detected through advances in imaging techniques. The underlying mechanisms for vascular tortuosity, however, remain unclear. Here, we tested the hypothesis that oxidative stress mediates the generation of tortuous vessels. We used the bilateral common carotid artery (CCA) ligation model to induce vascular tortuosity. Both young and adult rats showed basilar artery tortuous morphological changes one month after bilateral CCA ligation. These tortuous changes were permanent but more pronounced in the adult rats. Microarray and real-time PCR analysis revealed that these tortuous changes were accompanied by the induction of oxidative stress-related genes. Moreover, the indicated model in rabbits showed that tortuous morphological changes to the basilar artery were suppressed by antioxidant treatment. These results are highly suggestive of the significance of oxidative stress in the development of vascular tortuosity. Although further studies will be needed to elucidate the possible mechanisms by which oxidative stress enhances vascular tortuosity, our study also points toward possible prophylaxis and treatment for vascular tortuosity.


Author(s):  
Marco Orlandi ◽  
Stefano Masi ◽  
Devina Bhowruth ◽  
Yago Leira ◽  
Georgios Georgiopoulos ◽  
...  

Objective: Inflammation, oxidative stress, and endothelial dysfunction are known to contribute to ischemia-reperfusion injury. Remote ischemic preconditioning (RIPC) protects from endothelial dysfunction and the damage induced by ischemia-reperfusion. Using intensive periodontal treatment (IPT), an established human model of acute systemic inflammation, we investigated whether RIPC prevents endothelial dysfunction and modulates systemic levels of inflammation and oxidative stress. Approach and Results: Forty-nine participants with periodontitis were randomly allocated to receive either 3 cycles of ischemia-reperfusion on the upper limb (N=25, RIPC) or a sham procedure (N=24, control) before IPT. Endothelial function assessed by flow-mediated dilatation of the brachial artery, inflammatory cytokines, markers of vascular injury, and oxidative stress were evaluated at baseline, day 1, and day 7 after IPT. Twenty-four hours post-IPT, the RIPC group had lower levels of IL (interleukin)-10 and IL-12 compared with the control group ( P <0.05). RIPC attenuated the IPT-induced increase in IL-1β, E-selectin, sICAM-3 (soluble intercellular adhesion molecule 3), and s-thrombomodulin levels between the baseline and day 1 ( P for interaction <0.1). Conversely, oxidative stress was differentially increased at day1 in the RIPC group compared with the control group ( P for interaction <0.1). This was accompanied by a better flow-mediated dilatation (mean difference 1.75% [95% CI, 0.428–3.07], P =0.011). After 7 days from IPT, most of the inflammatory markers endothelial-dependent and -independent vasodilation were similar between groups. Conclusions: RIPC prevented acute endothelial dysfunction by modulation of inflammation and oxidation processes in patients with periodontitis following exposure to an acute inflammatory stimulus. REGISTRATION: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT03072342.


2018 ◽  
Vol 36 (11) ◽  
pp. 1205-1210
Author(s):  
Didem Arman ◽  
Secil Ercin ◽  
Sevilay Topcuoğlu ◽  
Ayşem Kaya ◽  
Taner Yavuz ◽  
...  

Objective The present study aimed to assess the global oxidant and antioxidant status in infants born to preeclamptic mothers and their correlation with cardiac functions. Study Design We compared 40 infants born to preeclamptic mothers with 40 premature infants born to normotensive mothers. We assessed the relationship between echocardiographic measurements and total antioxidant capacity (TAC) and total oxidant status (TOS) values. Results In the study group, TAC, TOS, and oxidative stress index (OSI) levels were significantly higher in the cord blood (p = 0.03, 0.04, and 0.039, respectively) than in the control group. We did not observe any correlation between echocardiographic measurements and TAC, TOS, and OSI levels in infants born to preeclamptic mothers. Conclusion Compared with the control group, despite higher TAC levels in infants born to preeclamptic mothers, concurrent elevated OSI levels reveal that the oxidant–antioxidant balance is disturbed in favor of oxidants. Furthermore, the findings of this study suggest that echocardiographic parameters are unaffected by the oxidant status.


2009 ◽  
Vol 55 (4) ◽  
pp. 384-388 ◽  
Author(s):  
Yuri Karen Sinzato ◽  
Paula Helena Ortiz Lima ◽  
Kleber Eduardo de Campos ◽  
Ana Carolina Inhasz Kiss ◽  
Marilza Vieira Cunha Rudge ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document