scholarly journals Production of β-methylamino-L-alanine (BMAA) and Its Isomers by Freshwater Diatoms

Toxins ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 512 ◽  
Author(s):  
Jake P. Violi ◽  
Jordan A. Facey ◽  
Simon M. Mitrovic ◽  
Anne Colville ◽  
Kenneth J. Rodgers

β-methylamino-L-alanine (BMAA) is a non-protein amino acid that has been implicated as a risk factor for motor neurone disease (MND). BMAA is produced by a wide range of cyanobacteria globally and by a small number of marine diatoms. BMAA is commonly found with two of its constitutional isomers: 2,4-diaminobutyric acid (2,4-DAB), and N-(2-aminoethyl)glycine (AEG). The isomer 2,4-DAB, like BMAA, has neurotoxic properties. While many studies have shown BMAA production by cyanobacteria, few studies have looked at other algal groups. Several studies have shown BMAA production by marine diatoms; however, there are no studies examining freshwater diatoms. This study aimed to determine if some freshwater diatoms produced BMAA, and which diatom taxa are capable of BMAA, 2,4-DAB and AEG production. Five axenic diatom cultures were established from river and lake sites across eastern Australia. Cultures were harvested during the stationary growth phase and intracellular amino acids were extracted. Using liquid chromatography triple quadrupole mass spectrometry (LC-MS/MS), diatom extracts were analysed for the presence of both free and protein-associated BMAA, 2,4-DAB and AEG. Of the five diatom cultures analysed, four were found to have detectable BMAA and AEG, while 2,4-DAB was found in all cultures. These results show that BMAA production by diatoms is not confined to marine genera and that the prevalence of these non-protein amino acids in Australian freshwater environments cannot be solely attributed to cyanobacteria.

Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 481
Author(s):  
Gemma G. Martínez-García ◽  
Raúl F. Pérez ◽  
Álvaro F. Fernández ◽  
Sylvere Durand ◽  
Guido Kroemer ◽  
...  

Autophagy is an essential protective mechanism that allows mammalian cells to cope with a variety of stressors and contributes to maintaining cellular and tissue homeostasis. Due to these crucial roles and also to the fact that autophagy malfunction has been described in a wide range of pathologies, an increasing number of in vivo studies involving animal models targeting autophagy genes have been developed. In mammals, total autophagy inactivation is lethal, and constitutive knockout models lacking effectors of this route are not viable, which has hindered so far the analysis of the consequences of a systemic autophagy decline. Here, we take advantage of atg4b−/− mice, an autophagy-deficient model with only partial disruption of the process, to assess the effects of systemic reduction of autophagy on the metabolome. We describe for the first time the metabolic footprint of systemic autophagy decline, showing that impaired autophagy results in highly tissue-dependent alterations that are more accentuated in the skeletal muscle and plasma. These changes, which include changes in the levels of amino-acids, lipids, or nucleosides, sometimes resemble those that are frequently described in conditions like aging, obesity, or cardiac damage. We also discuss different hypotheses on how impaired autophagy may affect the metabolism of several tissues in mammals.


2021 ◽  
Vol 7 (8) ◽  
pp. 593
Author(s):  
Jingjing Wang ◽  
Alexander Berestetskiy ◽  
Qiongbo Hu

Destruxin A (DA), a hexa-cyclodepsipeptidic mycotoxin produced by the entomopathogenic fungus Metarhizium anisopliae, exhibits insecticidal activities in a wide range of pests and is known as an innate immunity inhibitor. However, its mechanism of action requires further investigation. In this research, the interactions of DA with the six aminoacyl tRNA synthetases (ARSs) of Bombyx mori, BmAlaRS, BmCysRS, BmMetRS, BmValRS, BmIleRS, and BmGluProRS, were analyzed. The six ARSs were expressed and purified. The BLI (biolayer interferometry) results indicated that DA binds these ARSs with the affinity indices (KD) of 10−4 to 10−5 M. The molecular docking suggested a similar interaction mode of DA with ARSs, whereby DA settled into a pocket through hydrogen bonds with Asn, Arg, His, Lys, and Tyr of ARSs. Furthermore, DA treatments decreased the contents of soluble protein and free amino acids in Bm12 cells, which suggested that DA impedes protein synthesis. Lastly, the ARSs in Bm12 cells were all downregulated by DA stress. This study sheds light on exploring and answering the molecular target of DA against target insects.


2002 ◽  
Vol 16 (6) ◽  
pp. 893 ◽  
Author(s):  
I. Beveridge

The monotypic nematode genus Coronostrongylus Johnston & Mawson, 1939 from the stomachs of macropodid marsupials was reviewed and was found to consist of a least seven closely related species. Coronostrongylus coronatus Johnston & Mawson, 1939 is found most commonly in Macropus rufogriseus, but occurs occasionally in M. dorsalis, M. parryi and Petrogale inornata. Coronostrongylus johnsoni, sp. nov. is most commonly found in M. dorsalis, but occurs also in M. rufogriseus, M. parma, Thylogale stigmatica, Petrogale godmani and P. brachyotis. Coronostrongylus barkeri, sp. nov. is most prevalent in Onychogalea unguifera, but occurs also in M. rufus, M. robustus and P. brachyotis. Coronostrongylus closei, sp. nov. is restricted to Petrogale persephone. Coronostrongylus sharmani, sp. nov. occurs only in rock wallabies from eastern Australia: P.�coenensis, P. godmani and P. mareeba; C. spratti, sp. nov. occurs in P. inornata and P. assimilis. Coronostrongylus spearei, sp. nov. is restricted to Papua New Guinea where it is found in Dorcopsulus vanhearni, Dorcopsis hageni and D. muelleri. Although all of the nematode species occur in one principal host species or a series of closely related host species, occurrences in geographically disjunct areas and in phylogenetically distant hosts are features of C. coronatus, C. barkeri, sp. nov. and C. johnsoni, sp. nov. The occurrence of seven closely related nematode species found in a wide range of macropodid host species is more readily accounted for by a hypothesis involving multiple colonisations of hosts than by the hypothesis of co-speciation.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 599
Author(s):  
Živilė Tarasevičienė ◽  
Aloyzas Velička ◽  
Aurelija Paulauskienė

Phenolic compounds have a number of benefits to human health and can be used as preventive compounds for the development of some chronic diseases. Mentha plants are not only a good source of essential oils, but also contain significant levels of wide range of phenolic compounds. The aim of this research was to investigate the possibility to increase phenols content in Mentha plants under the foliar application with L-phenylalanine, L-tryptophan, L-tyrosine at two concentrations (100 mg L−1 and 200 mg L−1) and to create preconditions for using this plant for even more diverse purposes. Quantitative and qualitative analyses of phenols in mints were performed by HPLC method. Foliar application of amino acids increased the total phenol content from 1.22 to 3.51 times depending on the treatment and mint variety. The most pronounced foliar application to total phenols content was tryptophane especially in Mentha piperita “Swiss”. Mentha piperita “Swiss” was affected most by foliar application and the amount of total phenolic acids depending on the treatment ranged from 159.25 to 664.03 mg 100 g−1 (DW), respectively, non-sprayed and sprayed with tryptophane 100 mg L−1. Our results suggest that the biophenol content varies according to such factors as foliar application and variety, and every single mint variety has individual response to different applications of amino acids.


2000 ◽  
Vol 78 (8) ◽  
pp. 1052-1059 ◽  
Author(s):  
C Aliaga ◽  
E A Lissi

Stable free radicals derived from 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS·+) have been extensively employed to monitor the antioxidant capacity of biological fluids and beverages. Besides reacting with typical antioxidants (such as phenols or thiols) these radicals react with a variety of hydrogen or electron donors. The present work reports on the kinetics and mechanism of these radical reactions with several amino acids. Reaction rates notably increase when the pH of the media increases and, when measured under similar conditions, follows the ordercysteine > > tryptophan > tyrosine > histidine > cystineThe kinetics of the process is interpreted in terms of a mechanism comprising an initial pH dependent reversible step, followed by secondary reactions of the substrate derived radical with itself or with another ABTS·+; this simple three-step mechanism leads to very complex kinetic expressions. The specific rate constants of several of the elementary steps were determined by working under a wide range of substrate, radical, and ABTS concentrations. The values obtained for the initial interaction between the ABTS derived radical and the substrate range from 0.5 M–1 s–1 to 1.9 × 106 M–1 s–1 for histidine and cysteine, respectively.Key words: ABTS radical cation, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid), amino acids, kinetics.


2016 ◽  
Vol 22 (1) ◽  
pp. 3
Author(s):  
Kirby R. Smith ◽  
Carol Scarpaci ◽  
Brett M. Louden ◽  
Nicholas M. Otway

Underwater stereo-video photogrammetry was used to document the pectoral fin positions of various life-history stages of the critically endangered east Australian population of the grey nurse shark (Carcharias taurus) during normal swimming behaviour at multiple aggregation sites. A wide range in pectoral fin positions was recorded with dihedral pectoral fin angles ranging from –25 to 88°. Pectoral fin angles varied significantly among sites and this was attributed to the differing navigational and energetic requirements of the sharks. There was no significant relationship between pectoral fin angles and distances separating the shark and scuba diver. The wide range in pectoral fin angles, interactive use of the fins during swimming, low-energy behaviours of the sharks at aggregation sites and absence of ‘fight’ response agonistic behaviour indicated that the species does not exhibit agonistic pectoral fin depression. Reports of agonistic pectoral fin depression in the grey nurse shark obtained with visual estimates should be treated as preliminary observations requiring further testing using accurate sampling methods such as stereo photogrammetry. It is important that diver compliance with existing management guidelines that prohibit divers from chasing or harassing grey nurse sharks and blocking cave and gutter entrances is maintained.


1989 ◽  
Vol 143 (1) ◽  
pp. 321-331 ◽  
Author(s):  
C. D. Moyes ◽  
L. T. Buck ◽  
P. W. Hochachka ◽  
R. K. Suarez

Substrate preferences of isolated mitochondria and maximal enzyme activities were used to assess the oxidative capacities of red muscle (RM) and white muscle (WM) of carp (Cyprinus carpio). A 14-fold higher activity of citrate synthase (CS) in RM reflects the higher mitochondrial density in this tissue. RM mitochondria oxidize pyruvate and fatty acyl carnitines (8:O, 12:O, 16:O) at similarly high rates. WM mitochondria oxidize these fatty acyl carnitines at 35–70% the rate of pyruvate, depending on chain length. WM has only half the carnitine palmitoyl transferase/CS ratio of RM, but similar ratios of beta-hydroxyacyl CoA dehydrogenase/CS. Ketone bodies are poor substrates for mitochondria from both tissues. In both tissues mitochondrial alpha-glycerophosphate oxidation was minimal, and alpha-glycerophosphate dehydrogenase was present at low activities, suggesting the alpha-glycerophosphate shuttle is of minor significance in maintaining cytosolic redox balance in either tissue. The mitochondrial oxidation rates of other substrates relative to pyruvate are as follows: alpha-ketoglutarate 90% (RM and WM); glutamate 45% (WM) and 70% (RM); proline 20% (WM) and 45% (RM). Oxidation of neutral amino acids (serine, glycine, alanine, beta-alanine) was not consistently detectable. These data suggest that RM and WM differ in mitochondrial properties as well as mitochondrial abundance. Whereas RM mitochondria appear to be able to utilize a wide range of metabolic fuels (fatty acids, pyruvate, amino acids but not ketone bodies), WM mitochondria appear to be specialized to use pyruvate.


2022 ◽  
Vol 23 (2) ◽  
pp. 938
Author(s):  
Olubodun Michael Lateef ◽  
Michael Olawale Akintubosun ◽  
Olamide Tosin Olaoba ◽  
Sunday Ocholi Samson ◽  
Malgorzata Adamczyk

The evolutional development of the RNA translation process that leads to protein synthesis based on naturally occurring amino acids has its continuation via synthetic biology, the so-called rational bioengineering. Genetic code expansion (GCE) explores beyond the natural translational processes to further enhance the structural properties and augment the functionality of a wide range of proteins. Prokaryotic and eukaryotic ribosomal machinery have been proven to accept engineered tRNAs from orthogonal organisms to efficiently incorporate noncanonical amino acids (ncAAs) with rationally designed side chains. These side chains can be reactive or functional groups, which can be extensively utilized in biochemical, biophysical, and cellular studies. Genetic code extension offers the contingency of introducing more than one ncAA into protein through frameshift suppression, multi-site-specific incorporation of ncAAs, thereby increasing the vast number of possible applications. However, different mediating factors reduce the yield and efficiency of ncAA incorporation into synthetic proteins. In this review, we comment on the recent advancements in genetic code expansion to signify the relevance of systems biology in improving ncAA incorporation efficiency. We discuss the emerging impact of tRNA modifications and metabolism in protein design. We also provide examples of the latest successful accomplishments in synthetic protein therapeutics and show how codon expansion has been employed in various scientific and biotechnological applications.


2021 ◽  
Vol 5 (4) ◽  
pp. 977-983
Author(s):  
Petro Fedyshyn ◽  
Oleh Smirnov ◽  
Liliia Kalachniuk

Studies of preparations that decrease oxidative stress and, as a consequence, that can prevent or reduce the development of alcoholic liver disease are relevant. A wide range of drugs, the bioprotective effect of which is studied, in its action is associated with natural antioxidant systems. Therefore, the study of the features of these systems is necessary for the effective development of bio protectors. The aim is to analyze changes in the quantitative and qualitative composition of amino acids involved in antioxidant mechanisms in the presence of alcohol-induced stress in rats. In the presence of alcohol-induced oxidative stress, there are changes in the quantitative and qualitative composition of amino acids (methionine, serine, taurine), which are involved in the mechanisms of antioxidant protection - cycles of S-adenosylmethionine and glutathione. A slight increase in methionine levels in the blood serum of animals of the experimental group and disruption of the recovery cycle of methionine under alcohol-induced oxidative stress are arguments for the ineffectiveness of S-adenosylmethionine as a bioprotective substance. The same decrease in the level of serine (by 15%) and taurine (by 13%), and analysis of literature data, may be indicate the "secondary" nature of glutathione as an antioxidant compared to taurine.


2015 ◽  
Vol 10 (2) ◽  
Author(s):  
M. Murwantoko ◽  
Chio Oka ◽  
Masashi Kawaichi

HtrA which is characterized by the combination of a trypsin-like catalytic domain with at least one C-terminalPDZ domain is a highly conserved family of serine proteases found in a wide range of organisms. However theidentified HtrA family numbers varies among spesies, for example the number of mammalian, Eschericia coli,fruit fly-HtrA family are 4, 3 and 1 gene respectively. One gene is predicted exist in zebrafish. Since no completeinformation available on zebrafish HtrA, in this paper zebrafish HtrA (zHtrA) gene was analyzed. The zHtrA isbelonged to HtrA1 member and predicted encodes 478 amino acids with a signal peptide, a IGF binding domain,a Kazal-type inhibitor domain in the up stream of HtrA-bacterial homolog. At the amino acid sequence the zHtrA1showed the 69%, 69%, 68%, 54% and 54% with the rat HtrA1, mouse HtrA1, human HtrA1, human HtrA3 andmouse HtrA4 respectively. The zHtrA1 is firstly expressed at 60 hpf and mainly in the vertebral rudiments in thetail region.


Sign in / Sign up

Export Citation Format

Share Document