scholarly journals Unprecedented Diversity of ssDNA Phages from the Family Microviridae Detected within the Gut of a Protochordate Model Organism (Ciona robusta)

Viruses ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 404 ◽  
Author(s):  
Alexandria Creasy ◽  
Karyna Rosario ◽  
Brittany Leigh ◽  
Larry Dishaw ◽  
Mya Breitbart

Phages (viruses that infect bacteria) play important roles in the gut ecosystem through infection of bacterial hosts, yet the gut virome remains poorly characterized. Mammalian gut viromes are dominated by double-stranded DNA (dsDNA) phages belonging to the order Caudovirales and single-stranded DNA (ssDNA) phages belonging to the family Microviridae. Since the relative proportion of each of these phage groups appears to correlate with age and health status in humans, it is critical to understand both ssDNA and dsDNA phages in the gut. Building upon prior research describing dsDNA viruses in the gut of Ciona robusta, a marine invertebrate model system used to study gut microbial interactions, this study investigated ssDNA phages found in the Ciona gut. We identified 258 Microviridae genomes, which were dominated by novel members of the Gokushovirinae subfamily, but also represented several proposed phylogenetic groups (Alpavirinae, Aravirinae, Group D, Parabacteroides prophages, and Pequeñovirus) and a novel group. Comparative analyses between Ciona specimens with full and cleared guts, as well as the surrounding water, indicated that Ciona retains a distinct and highly diverse community of ssDNA phages. This study significantly expands the known diversity within the Microviridae family and demonstrates the promise of Ciona as a model system for investigating their role in animal health.

2019 ◽  
Vol 7 (9) ◽  
pp. 336 ◽  
Author(s):  
Florence Capo ◽  
Alexa Wilson ◽  
Francesca Di Cara

In all metazoans, the intestinal tract is an essential organ to integrate nutritional signaling, hormonal cues and immunometabolic networks. The dysregulation of intestinal epithelium functions can impact organism physiology and, in humans, leads to devastating and complex diseases, such as inflammatory bowel diseases, intestinal cancers, and obesity. Two decades ago, the discovery of an immune response in the intestine of the genetic model system, Drosophila melanogaster, sparked interest in using this model organism to dissect the mechanisms that govern gut (patho) physiology in humans. In 2007, the finding of the intestinal stem cell lineage, followed by the development of tools available for its manipulation in vivo, helped to elucidate the structural organization and functions of the fly intestine and its similarity with mammalian gastrointestinal systems. To date, studies of the Drosophila gut have already helped to shed light on a broad range of biological questions regarding stem cells and their niches, interorgan communication, immunity and immunometabolism, making the Drosophila a promising model organism for human enteric studies. This review summarizes our current knowledge of the structure and functions of the Drosophila melanogaster intestine, asserting its validity as an emerging model system to study gut physiology, regeneration, immune defenses and host-microbiota interactions.


Zootaxa ◽  
2018 ◽  
Vol 4415 (1) ◽  
pp. 45 ◽  
Author(s):  
PIOTR GĄSIOREK ◽  
DANIEL STEC ◽  
WITOLD MOREK ◽  
ŁUKASZ MICHALCZYK

A laboratory strain identified as “Hypsibius dujardini” is one of the best studied tardigrade strains: it is widely used as a model organism in a variety of research projects, ranging from developmental and evolutionary biology through physiology and anatomy to astrobiology. Hypsibius dujardini, originally described from the Île-de-France by Doyère in the first half of the 19th century, is now the nominal species for the superfamily Hypsibioidea. The species was traditionally considered cosmopolitan despite the fact that insufficient, old and sometimes contradictory descriptions and records prevented adequate delineations of similar Hypsibius species. As a consequence, H. dujardini appeared to occur globally, from Norway to Samoa. In this paper, we provide the first integrated taxonomic redescription of H. dujardini. In addition to classic imaging by light microscopy and a comprehensive morphometric dataset, we present scanning electron photomicrographs, and DNA sequences for three nuclear markers (18S rRNA, 28S rRNA, ITS-2) and one mitochondrial marker (COI) that are characterised by various mutation rates. The results of our study reveal that a commercially available strain that is maintained in many laboratories throughout the world, and assumed to represent H. dujardini sensu stricto, represents, in fact, a new species: H. exemplaris sp. nov. Redescribing the nominal taxon for Hypsibiidae, we also redefine the family and amend the definitions of the subfamily Hypsibiinae and the genus Hypsibius. Moreover, we transfer H. arcticus (Murray, 1907) and Hypsibius conifer Mihelčič, 1938 to the genus Ramazzottius since the species exhibit claws and eggs of the Ramazzottius type. Finally, we designate H. fuhrmanni as subjectively invalid because the extremely poor description precludes identifying neotype material. 


Author(s):  
E.S. Swai ◽  
N.P. French ◽  
E.D. Karimuribo ◽  
J.L. Fitzpatrick ◽  
M.J. Bryant ◽  
...  

The prevalence of Cryptosporidium spp. infection in a cross-sectional study of dairy cattle, from two contrasting dairying regions in Tanzania, were determined by staining smears of faecal samples with the modified Ziehl-Neelsen technique. Of the 1 126 faecal samples screened, 19.7% were positive for Cryptosporidium spp. The prevalence was lower in Tanga Region than in Iringa Region. The prevalence of affected farms was 20% in Tanga and 21% in Iringa. In both regions, the probability of detecting Cryptosporidium oocysts in faeces varied with animal class, but these were not consistent in both regions. In Tanga Region, Cryptosporidium oocysts were significantly more likely to be found in the faeces of milking cows. In Iringa Region, the likelihood that cattle had Cryptosporidium-positive faeces declined with age, and milking cattle were significantly less likely to have Cryptosporidium positive faeces. In this region, 7% of cattle were housed within the family house at night, and this was marginally associated with a higher likelihood that animals had Cryptosporidium-positive faeces. Our study suggests that even though herd sizes are small, Cryptosporidium spp. are endemic on many Tanzanian smallholder dairy farms. These protozoa may impact on animal health and production, but also on human health, given the close associations between the cattle and their keepers. Further studies are required to assess these risks in more detail, and understand the epidemiology of Cryptosporidium spp. in this management system.


2019 ◽  
Vol 29 (2) ◽  
pp. 75
Author(s):  
Prima Mei Widiyanti ◽  
Mirnawati Bachrum Sudarwanto ◽  
Etih Sudarnika ◽  
Raphaella Widiastuti

The livestock sector can improve the community's economy and has a role in fulfilling food needs, especially animal protein. One of the problems in the livestock sector is the presence of infectious diseases that consequently need treatment using veterinary drugs. This paper describes the use of enrofloxacin antibiotics as veterinary drug and their residual hazards on public health. Enrofloxacin is an antibiotic from the family of fluoroquinolones (second generation of quinolone). Enrofloxacin is a broad-spectrum antibiotic that is effective to kill Gram positive and negative bacteria, so it was used for the treatment of various diseases in animals. Pharmacokinetically, enrofloxacin will be metabolized into ciprofloxacin and other metabolites. The improper use of enrofloxacin antibiotics caused residues in food products of animal origin, microbial resistance and toxicity, therefore the use of enrofloxacin needs to be monitored and evaluated for the sake of animal health and society.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinji Honda ◽  
Ana Eusebio-Cope ◽  
Shuhei Miyashita ◽  
Ayumi Yokoyama ◽  
Annisa Aulia ◽  
...  

Abstract The filamentous fungus Neurospora crassa is used as a model organism for genetics, developmental biology and molecular biology. Remarkably, it is not known to host or to be susceptible to infection with any viruses. Here, we identify diverse RNA viruses in N. crassa and other Neurospora species, and show that N. crassa supports the replication of these viruses as well as some viruses from other fungi. Several encapsidated double-stranded RNA viruses and capsid-less positive-sense single-stranded RNA viruses can be experimentally introduced into N. crassa protoplasts or spheroplasts. This allowed us to examine viral replication and RNAi-mediated antiviral responses in this organism. We show that viral infection upregulates the transcription of RNAi components, and that Dicer proteins (DCL-1, DCL-2) and an Argonaute (QDE-2) participate in suppression of viral replication. Our study thus establishes N. crassa as a model system for the study of host-virus interactions.


2019 ◽  
Vol 63 (8-9-10) ◽  
pp. 317-320 ◽  
Author(s):  
Ricardo Escalante ◽  
Elena Cardenal-Muñoz

When we set out to organize this Special Issue, we faced the difficult task of gathering together a large variety of topics with the unique commonality of having been studied in a single model organism, Dictyostelium discoideum. This apparent setback turned into a wonderful opportunity to learn about an organism as a whole, which provides a more complete understanding of life processes, their natural meaning and their changes during evolution. From studies dedicated almost exclusively to cell motility, differentiation and patterning, the versatility of D. discoideum has allowed in recent years the expansion of our knowledge to other areas, including cell biology and many others related to human diseases. The present collection of papers can be considered as a journey throughout the mechanisms of life, where D. discoideum acts as a very special tourist guide.


2010 ◽  
Vol 28 (No. 4) ◽  
pp. 326-332 ◽  
Author(s):  
S. Purkrtová ◽  
H. Turoňová ◽  
T. Pilchová ◽  
K. Demnerová ◽  
J. Pazlarová

We studied the optimal conditions for the biofilm development by Listeria monocytogenes on a model system represented by microtiter plates, and also for determined some effective disinfectant agents. Listeria monocytogenes ATCC 13932 and an industrial isolate of Listeria monocytogenes Lm-24 were compared as to their abilities to form biofilms. The starting concentration of the cells leading to the most reproducible results was 0.5 McFarland. The temperatures tested ranged between 8°C to 37°C, the optimal values to form biofilm in buffered peptone water (BPW) with 0.05% glucose were 25°C and 30°C. Under comparable conditions the persistent strain L. monocytogenes Lm-24 constituted more massive biofilm than did the reference strain. The following disinfectants were applied: Savo, Merades Alco, benzalalkonium chloride. A persistent industry in isolate Listeria monocytogenes Lm-24 was used as the model organism for these tests. Benzalalkonium chloride treatment was found to be the most efficient way to damage the biofilm. One minute treatment with 500 mg/l was lethal for the biofilm cells, and that with 125 mg/l for planctonic cells. Savo suppresed the viability of the biofilm cells only by about 20% on average while being lethal for planctonic cells. Merades Alco exhibited only a weak effect on both the biofilm and planctonic cells.


2019 ◽  
Vol 375 (1792) ◽  
pp. 20190164 ◽  
Author(s):  
Lei Zhao ◽  
Yuqing Hou ◽  
Nathan A. McNeill ◽  
George B. Witman

Nearly all motile cilia and flagella (terms here used interchangeably) have a ‘9+2’ axoneme containing nine outer doublet microtubules and two central microtubules. The central pair of microtubules plus associated projections, termed the central apparatus (CA), is involved in the control of flagellar motility and is essential for the normal movement of ‘9+2’ cilia. Research using the green alga Chlamydomonas reinhardtii , an important model system for studying cilia, has provided most of our knowledge of the protein composition of the CA, and recent work using this organism has expanded the number of known and candidate CA proteins nearly threefold. Here we take advantage of this enhanced proteome to examine the genomes of a wide range of eukaryotic organisms, representing all of the major phylogenetic groups, to identify predicted orthologues of the C. reinhardtii CA proteins and explore how widely the proteins are conserved and whether there are patterns to this conservation. We also discuss in detail two contrasting groups of CA proteins—the ASH-domain proteins, which are broadly conserved, and the PAS proteins, which are restricted primarily to the volvocalean algae. This article is part of the Theo Murphy meeting issue ‘Unity and diversity of cilia in locomotion and transport’.


Author(s):  
Todd W Harris ◽  
Valerio Arnaboldi ◽  
Scott Cain ◽  
Juancarlos Chan ◽  
Wen J Chen ◽  
...  

Abstract WormBase (https://wormbase.org/) is a mature Model Organism Information Resource supporting researchers using the nematode Caenorhabditis elegans as a model system for studies across a broad range of basic biological processes. Toward this mission, WormBase efforts are arranged in three primary facets: curation, user interface and architecture. In this update, we describe progress in each of these three areas. In particular, we discuss the status of literature curation and recently added data, detail new features of the web interface and options for users wishing to conduct data mining workflows, and discuss our efforts to build a robust and scalable architecture by leveraging commercial cloud offerings. We conclude with a description of WormBase's role as a founding member of the nascent Alliance of Genome Resources.


2001 ◽  
Vol 86 (07) ◽  
pp. 259-265 ◽  
Author(s):  
Andrew Leavitt ◽  
Sanford Shattil

SummaryIntegrin αIIbβ3 mediates key platelet adhesive responses during hemostasis and thrombosis. Adhesive ligand binding to αIIbβ3 is regulated by “inside-out” signals, while adhesion-dependent cytoskeletal events are regulated by “outside-in” signals from αIIbβ3. Currently, the molecular basis of bidirectional αIIbβ3 signaling is incompletely understood. The functional assessment of integrin signaling pathways in nucleated cells has been facilitated by techniques such as viral transduction which enable expression of dominant-active and dominant-inhibitory gene products. This approach cannot be used with anucleate platelets. However, recent advances in the ability to expand human and murine megakaryocytes from hematopoietic stem cells provide a tractable and genetically manipulatable system for studies of αIIbβ3 signaling. This overview will discuss some of the advantages and limitations of this approach and provide examples of its utility. Thus, in addition to their intrinsic value for understanding hematopoiesis and platelet formation, primary megakaryocytes represent a model system complementary to platelets for unraveling the remaining mysteries of αIIbβ3 signaling.


Sign in / Sign up

Export Citation Format

Share Document