scholarly journals MultiBac: Baculovirus-Mediated Multigene DNA Cargo Delivery in Insect and Mammalian Cells

Viruses ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 198 ◽  
Author(s):  
Kapil Gupta ◽  
Christine Tölzer ◽  
Duygu Sari-Ak ◽  
Daniel Fitzgerald ◽  
Christiane Schaffitzel ◽  
...  

The baculovirus/insect cell system (BICS) is widely used in academia and industry to produce eukaryotic proteins for many applications, ranging from structure analysis to drug screening and the provision of protein biologics and therapeutics. Multi-protein complexes have emerged as vital catalysts of cellular function. In order to unlock the structure and mechanism of these essential molecular machines and decipher their function, we developed MultiBac, a BICS particularly tailored for heterologous multigene transfer and multi-protein complex production. Baculovirus is unique among common viral vectors in its capacity to accommodate very large quantities of heterologous DNA and to faithfully deliver this cargo to a host cell of choice. We exploited this beneficial feature to outfit insect cells with synthetic DNA circuitry conferring new functionality during heterologous protein expression, and developing customized MultiBac baculovirus variants in the process. By altering its tropism, recombinant baculovirions can be used for the highly efficient delivery of a customized DNA cargo in mammalian cells and tissues. Current advances in synthetic biology greatly facilitate the construction or recombinant baculoviral genomes for gene editing and genome engineering, mediated by a MultiBac baculovirus tailored to this purpose. Here, recent developments and exploits of the MultiBac system are presented and discussed.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 759
Author(s):  
Francesco Aulicino ◽  
Julien Capin ◽  
Imre Berger

DNA delivery is at the forefront of current research efforts in gene therapy and synthetic biology. Viral vectors have traditionally dominated the field; however, nonviral delivery systems are increasingly gaining traction. Baculoviruses are arthropod-specific viruses that can be easily engineered and repurposed to accommodate and deliver large sequences of exogenous DNA into mammalian cells, tissues, or ultimately organisms. These synthetic virus-derived nanosystems (SVNs) are safe, readily customized, and can be manufactured at scale. By implementing clustered regularly interspaced palindromic repeats (CRISPR) associated protein (CRISPR/Cas) modalities into this system, we developed SVNs capable of inserting complex DNAs into genomes, at base pair precision. We anticipate a major role for SVNs as an attractive alternative to viral vectors in accelerating genome engineering and gene therapy applications in the future.


2019 ◽  
Vol 16 (4) ◽  
pp. 267-276
Author(s):  
Qurat ul Ain Farooq ◽  
Noor ul Haq ◽  
Abdul Aziz ◽  
Sara Aimen ◽  
Muhammad Inam ul Haq

Background: Mass spectrometry is a tool used in analytical chemistry to identify components in a chemical compound and it is of tremendous importance in the field of biology for high throughput analysis of biomolecules, among which protein is of great interest. Objective: Advancement in proteomics based on mass spectrometry has led the way to quantify multiple protein complexes, and proteins interactions with DNA/RNA or other chemical compounds which is a breakthrough in the field of bioinformatics. Methods: Many new technologies have been introduced in electrospray ionization (ESI) and Matrixassisted Laser Desorption/Ionization (MALDI) techniques which have enhanced sensitivity, resolution and many other key features for the characterization of proteins. Results: The advent of ambient mass spectrometry and its different versions like Desorption Electrospray Ionization (DESI), DART and ELDI has brought a huge revolution in proteomics research. Different imaging techniques are also introduced in MS to map proteins and other significant biomolecules. These drastic developments have paved the way to analyze large proteins of >200kDa easily. Conclusion: Here, we discuss the recent advancement in mass spectrometry, which is of great importance and it could lead us to further deep analysis of the molecules from different perspectives and further advancement in these techniques will enable us to find better ways for prediction of molecules and their behavioral properties.


2021 ◽  
Vol 22 (14) ◽  
pp. 7456
Author(s):  
Mousa A. Alghuthaymi ◽  
Aftab Ahmad ◽  
Zulqurnain Khan ◽  
Sultan Habibullah Khan ◽  
Farah K. Ahmed ◽  
...  

Rapid developments in the field of plant genome editing using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems necessitate more detailed consideration of the delivery of the CRISPR system into plants. Successful and safe editing of plant genomes is partly based on efficient delivery of the CRISPR system. Along with the use of plasmids and viral vectors as cargo material for genome editing, non-viral vectors have also been considered for delivery purposes. These non-viral vectors can be made of a variety of materials, including inorganic nanoparticles, carbon nanotubes, liposomes, and protein- and peptide-based nanoparticles, as well as nanoscale polymeric materials. They have a decreased immune response, an advantage over viral vectors, and offer additional flexibility in their design, allowing them to be functionalized and targeted to specific sites in a biological system with low cytotoxicity. This review is dedicated to describing the delivery methods of CRISPR system into plants with emphasis on the use of non-viral vectors.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Benjamin H. Weinberg ◽  
Jang Hwan Cho ◽  
Yash Agarwal ◽  
N. T. Hang Pham ◽  
Leidy D. Caraballo ◽  
...  

Abstract Site-specific DNA recombinases are important genome engineering tools. Chemical- and light-inducible recombinases, in particular, enable spatiotemporal control of gene expression. However, inducible recombinases are scarce due to the challenge of engineering high performance systems, thus constraining the sophistication of genetic circuits and animal models that can be created. Here we present a library of >20 orthogonal inducible split recombinases that can be activated by small molecules, light and temperature in mammalian cells and mice. Furthermore, we engineer inducible split Cre systems with better performance than existing systems. Using our orthogonal inducible recombinases, we create a genetic switchboard that can independently regulate the expression of 3 different cytokines in the same cell, a tripartite inducible Flp, and a 4-input AND gate. We quantitatively characterize the inducible recombinases for benchmarking their performances, including computation of distinguishability of outputs. This library expands capabilities for multiplexed mammalian gene expression control.


Mitochondrion ◽  
2015 ◽  
Vol 21 ◽  
pp. 27-32 ◽  
Author(s):  
Yang Xu ◽  
Ashim Malhotra ◽  
Steven M. Claypool ◽  
Mindong Ren ◽  
Michael Schlame

1984 ◽  
Vol 98 (3) ◽  
pp. 904-910 ◽  
Author(s):  
W J Deery ◽  
A R Means ◽  
B R Brinkley

A Triton X-100-lysed cell system has been used to identify calmodulin on the cytoskeleton of 3T3 and transformed SV3T3 cells. By indirect immunofluorescence, calmodulin was found to be associated with both the cytoplasmic microtubule complex and the centrosomes. A number of cytoplasmic microtubules more resistant to disassembly upon either cold (0-4 degrees C) or hypotonic treatment, as well as following dilution have been identified. Most of the stable microtubules appeared to be associated with the centrosome at one end and with the plasma membrane at the other end. These microtubules could be induced to depolymerize, however, by micromolar Ca++ concentrations. These data suggest that, by interacting directly with the microtubule, calmodulin may influence microtubule assembly and ensure the Ca++-sensitivity of both mitotic and cytoplasmic microtubules.


2001 ◽  
Vol 276 (28) ◽  
pp. 26204-26210 ◽  
Author(s):  
Akiko Eguchi ◽  
Teruo Akuta ◽  
Hajime Okuyama ◽  
Takao Senda ◽  
Haruhiko Yokoi ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 736
Author(s):  
Yeri Alice Rim ◽  
Yoojun Nam ◽  
Narae Park ◽  
Ji Hyeon Ju

Gene delivery systems have become an essential component of research and the development of therapeutics for various diseases. Minicircles are non-viral vectors with promising characteristics for application in a variety of fields. With their minimal size, minicircles exhibit relatively high safety and efficient delivery of genes of interest into cells. Cartilage tissue lacks the natural ability to heal, making it difficult to treat osteoarthritis (OA) and rheumatoid arthritis (RA), which are the two main types of joint-related disease. Although both OA and RA affect the joint, RA is an autoimmune disease, while OA is a degenerative joint condition. Gene transfer using minicircles has also been used in many studies regarding cartilage and its diseased conditions. In this review, we summarize the cartilage-, OA-, and RA-based studies that have used minicircles as the gene delivery system.


Sign in / Sign up

Export Citation Format

Share Document