scholarly journals Plant Immunity and Crop Yield: A Sustainable Approach in Agri-Food Systems

Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 121
Author(s):  
Marcello Iriti ◽  
Sara Vitalini

Innate immunity represents a trait common to animals and plants. Indeed, similar to animals, plants also evolved a complex defense machinery to defend against pest and pathogen attacks. Due to the concerns posed by the intensive use of agrochemicals, the possibility to stimulate the plant immune system with environmentally friendly and low-risk chemical and biological inducers is intriguing. Therefore, some plant protection products are commercially available to trigger the plant’s immune system, with benefits in terms of consumer health and environmental protection.

Vaccines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 42 ◽  
Author(s):  
Marcello Iriti ◽  
Sara Vitalini

The development of novel strategies of plant disease management is crucial in view of the growing demand of sustainability in agri-food chains. The use of agrochemicals is not without risk for the consumer and environment in terms of their residues in food, feed, water bodies and harmful effects on nontarget organisms. However, because of the high global annual yield losses attributable to plant diseases and also due to global climate changes that have exacerbated some phytosanitary emergences, chemical input in agriculture is mandatory. In this complex scenario, the use of agrochemicals that boost the plant immune system represents a relatively novel approach in crop protection. These plant protection products are not antimicrobial or fungicidal agents, but include both natural and synthetic elicitors and plant activators that only target the host immune system, with no biocide mechanism of action. In general, these products present a number of strengths: they leave no residue and should not select resistant pathogen strains, they can be used to control virus diseases, and can increase the levels of bioactive phytochemicals in plant foods.


2019 ◽  
Author(s):  
Markus Rienth ◽  
Julien Crovadore ◽  
Sana Ghaffari ◽  
François Lefort

AbstractThe reduction of synthetic fungicides in agriculture a major challenge in maintaining sustainable production, protecting the environment and consumers’ health. Downy mildew caused by the oomycete Plasmopora viticola is the major pathogen in viticulture worldwide and responsible for up to 60% of pesticide treatments. Alternatives to reduce fungicides are thus utterly needed to ensure sustainable vineyard-ecosystems, consumer health and public acceptance. Essential oils (EOs) are amongst the most promising natural plant protection alternatives and have shown their antibacterial, antiviral and antifungal properties on several agricultural crops. However, the efficiency of EOs highly depends on timing, application method and the molecular interactions between the host, the pathogen and EO. Despite proven EO efficiency, the underlying processes are still not understood and remain a black box. The objectives of the present study were: a) to evaluate whether a continuous fumigation of a particular EO can control downy mildew in order to circumvent the drawbacks of direct application, b) to decipher molecular mechanisms that could be triggered in the host and the pathogen by EO application and c) to try to differentiate whether essential oils directly repress the oomycete or act as plant resistance primers.A custom-made climatic chamber was used for a continuous fumigation of potted vines with different EOs during long-term experiments. The grapevine (Vitis vinifera) cv Chasselas was chosen in reason of its high susceptibility to Plasmopara viticola. Grapevine cuttings were infected with P. viticola. and subsequently exposed to continuous fumigation of different EOs at different concentrations, during 2 application time spans (24 hours and 10 days). Experiments were stopped when infection symptoms were clearly observed on the leaves of the control plants. Plant physiology (photosynthesis and growth rate parameters) were recorded and leaves were sampled at different time points for subsequent RNA extraction and transcriptomics analysis. Strikingly, the Oregano vulgare essential oil vapour treatment during 24h post-infection proved to be sufficient to reduce downy mildew development by 95%. Total RNA was extracted from leaves of 24h and 10d treatments and used for whole transcriptome shotgun sequencing (RNA-seq). Sequenced reads were then mapped onto the V. vinifera and P. viticola genomes. Less than 1% of reads could be mapped onto the P. viticola genome from treated samples, whereas up to 30 % reads from the controls mapped onto the P. viticola genome, thereby confirming the visual observation of P. viticola absence in the treated plants. On average, 80 % of reads could be mapped onto the V. vinifera genome for differential expression analysis, which yielded 4800 modulated genes. Transcriptomic data clearly showed that the treatment triggered the plant’s innate immune system with genes involved in salicylic, jasmonic acid and ethylene synthesis and signaling, activating Pathogenenesis-Related-proteins as well as phytoalexin synthesis.These results elucidate EO-host-pathogen interactions for the first time and indicate that the antifungal efficiency of EO is mainly due to the triggering of resistance pathways inside the host plants. This is of major importance for the production and research on biopesticides, plant stimulation products and for resistance-breeding strategiesAuthor SummaryThe reduction of synthetic plant protection products is a major concern of modern agriculture. The oomycetePlasmopora viticolawhich causes downy mildew in grapevine is amongst the most important grapevine pests and responsible for the dispersion of huge amounts of pesticides in vineyards. Among the evaluated alternatives to reduce or replace synthetic pesticides, plant volatile compounds could represent a sustainable solution. Some plant essential oils (EOs) have already shown antifungal capacities. However, their application is often difficult in terms of the right timing of treatment, degradation, bad rainfastness, mixability and phytotoxicity.The aim of the present work was to investigate whether the vapour phase, applied by a continuous fumigation of different EOs, might inhibit the development of downy mildew on grapevine, and in case of proven efficiency, to study the induced transcriptomic changes by RNA-sequencing in an attempt to elucidate the underlaying molecular interactions. Our results showed that the vapour phases ofO. vulgareandT. vulgariswere highly efficient against the pathogen. The study of differentially expressed genes indicated that the EO vapour triggered the main mechanisms of the plant’s innate immune system such as PTI (Pattern-Triggered Immunity) and ETI (Effector Triggered immunity).For the first time these results highlight the effects of EOs vapour on plant genes expression, which is very valuable information for the development of new natural plant protection products, as well as for breeding disease resistant cultivars.


Author(s):  
I. V. Maksimov ◽  
M. Yu. Shein ◽  
R. M. Khairullin

Diseases annually cause significant crop losses and reduced quality of agricultural products. The development strategy of new environmentally friendly plant protection products should consider the role of the microbiome in host defense.


mBio ◽  
2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Takafumi Mukaihara ◽  
Tadashi Hatanaka ◽  
Masahito Nakano ◽  
Kenji Oda

ABSTRACT The plant pathogen Ralstonia solanacearum uses a large repertoire of type III effector proteins to succeed in infection. To clarify the function of effector proteins in host eukaryote cells, we expressed effectors in yeast cells and identified seven effector proteins that interfere with yeast growth. One of the effector proteins, RipAY, was found to share homology with the ChaC family proteins that function as γ-glutamyl cyclotransferases, which degrade glutathione (GSH), a tripeptide that plays important roles in the plant immune system. RipAY significantly inhibited yeast growth and simultaneously induced rapid GSH depletion when expressed in yeast cells. The in vitro GSH degradation activity of RipAY is specifically activated by eukaryotic factors in the yeast and plant extracts. Biochemical purification of the yeast protein identified that RipAY is activated by thioredoxin TRX2. On the other hand, RipAY was not activated by bacterial thioredoxins. Interestingly, RipAY was activated by plant h -type thioredoxins that exist in large amounts in the plant cytosol, but not by chloroplastic m -, f -, x -, y - and z -type thioredoxins, in a thiol-independent manner. The transient expression of RipAY decreased the GSH level in plant cells and affected the flg22-triggered production of reactive oxygen species (ROS) and expression of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) marker genes in Nicotiana benthamiana leaves. These results indicate that RipAY is activated by host cytosolic thioredoxins and degrades GSH specifically in plant cells to suppress plant immunity. IMPORTANCE Ralstonia solanacearum is the causal agent of bacterial wilt disease of plants. This pathogen injects virulence effector proteins into host cells to suppress disease resistance responses of plants. In this article, we report a biochemical activity of R. solanacearum effector protein RipAY. RipAY can degrade GSH, a tripeptide that plays important roles in the plant immune system, with its γ-glutamyl cyclotransferase activity. The high GSH degradation activity of RipAY is considered to be a good weapon for this bacterium to suppress plant immunity. However, GSH also plays important roles in bacterial tolerance to various stresses and growth. Interestingly, RipAY has an excellent safety mechanism to prevent unwanted firing of its enzyme activity in bacterial cells because RipAY is specifically activated by host eukaryotic thioredoxins. This study also reveals a novel host plant protein acting as a molecular switch for effector activation.


2020 ◽  
Author(s):  
Б. Мисриева ◽  
◽  

In the context of the intensive use of chemical plant protection products, the issue of ecologization is acute. The concept of environmental protection of grapes, as the most pesticidal crop, is based on the principles of managing the phytosanitary state of agrocenoses as a whole. At the same time, entomophages play a key role in the formation of a balanced self-regulating ecosystem. The development and application of the so-called biorational technologies with the predominant use of safe ecologically “soft” chemical plant protection products in the grape protection system is a prerequisite for activating a useful entomofauna. The targeted effect on the entomophage populations is based on phytosanitary monitoring, on their integration with pesticides. The article presents the results of many years of faunal studies of grape agrobiocenoses, reveals the most effective mechanisms for the regulation of dangerous bunching leaves and cotton scoops. Based on the original drawings, a morphological description of the most common species of tachy flies is given - Elodia tragica Mg., Pseudoperichaeta insidiosa, Tawnsendiellomyia nidicola.


2017 ◽  
Author(s):  
◽  
Christopher M. Garner

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Plants are constantly subjected to attack from pathogens. In order to defend themselves, plants have evolved a robust immune system. However, activation of this immune system interferes with plant growth and development. As such, it is very important for plant health to keep the immune system properly repressed when not needed. Using genetics and microscopy we have identified a novel repressor of the plant immune system, TOPLESS RELATED 2 (TPR2). TPR2 appears to repress the immune response after activation, thereby preventing a prolonged immune response. These results help us understand how the plant immune system is regulated at a molecular level.


2017 ◽  
Vol 47 (1) ◽  
Author(s):  
Alana Cristina Dorneles Wandscheer ◽  
Enio Marchesan ◽  
Marília Ferreira da Silva ◽  
Bruno Behenck Aramburu ◽  
Ricardo de David ◽  
...  

ABSTRACT: The intensive use of plant protection products in rice paddy fields ( Oryza sativa L.) has caused concern about the environmental impact on communities of non-target organisms that are natural inhabitants in these agroecosystems. The purpose of this review is to analyze the data currently available in the literature about some important fungicides and insecticides (such as trifloxystrobin, tebuconazole, tricyclazole, lambda-cyhalothrin, and thiamethoxam), which are currently used to control pests and diseases in rice paddy fields, as well as their effects on the community of non-target aquatic organisms.


Author(s):  
Daniil M Prigozhin ◽  
Ksenia V Krasileva

AbstractEvolution of recognition specificities by the immune system depends on the generation of receptor diversity, and connecting binding of new antigens with initiation of downstream signalling. In plant immunity, these functions are enabled by the family of innate Nucleotide-Binding Leucine Rich Repeat (NLR) receptors. In this paper we surveyed the NLR complements of 62 ecotypes of Arabidopsis thaliana and 54 lines of Brachypodium distachyon and identified a limited number of NLR subfamilies responsible for generation of new receptor specificities. We show that the predicted specificity-determining residues cluster on the surfaces of Leucine Rich Repeat domains, but the location of the clusters varies between NLR subfamilies. By comparing NLR phylogeny, allelic diversity, and known functions of the Arabidopsis NLRs, we formulate a hypothesis for emergence of direct and indirect pathogen sensing receptors, and of the autoimmune NLRs. These findings reveal the recurring patterns of evolution of innate immunity and inform NLR engineering efforts.


2019 ◽  
Vol 32 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Pai Li ◽  
Brad Day

The plant immune system comprises a complex network of signaling processes, regulated not only by classically defined immune components (e.g., resistance genes) but also by a suite of developmental, environmental, abiotic, and biotic-associated factors. In total, it is the sum of these interactions—the connectivity to a seemingly endless array of environments—that ensures proper activation, and control, of a system that is responsible for cell surveillance and response to threats presented by invading pests and pathogens. Over the past decade, the field of plant pathology has witnessed the discovery of numerous points of convergence between immunity, growth, and development, as well as overlap with seemingly disparate processes such as those that underpin plant response to changes in the environment. Toward defining how immune signaling is regulated, recent studies have focused on dissecting the mechanisms that underpin receptor-ligand interactions, phospho-regulation of signaling cascades, and the modulation of host gene expression during infection. As one of the major regulators of these immune signaling cascades, the plant cytoskeleton is the stage from which immune-associated processes are mobilized and oriented and, in this role, it controls the movement of the organelles, proteins, and chemical signals that support plant defense signaling. In short, the cytoskeleton is the battlefield from which pathogens and plants volley virulence and resistance, transforming resistance to susceptibility. Herein, we discuss the role of the eukaryotic cytoskeleton as a platform for the function of the plant immune system.


2019 ◽  
Author(s):  
Yuying Sang ◽  
Wenjia Yu ◽  
Haiyan Zhuang ◽  
Yali Wei ◽  
Lida Derevnina ◽  
...  

AbstractEffector proteins delivered inside plant cells are powerful weapons for bacterial pathogens, but this exposes the pathogen to potential recognition by the plant immune system. Therefore, the effector repertoire of a given pathogen must be balanced for a successful infection. Ralstonia solanacearum is an aggressive pathogen with a large repertoire of secreted effectors. One of these effectors, RipE1, is conserved in most R. solanacearum strains sequenced to date. In this work, we found that RipE1 triggers immunity in N. benthamiana, which requires the immune regulator SGT1, but not EDS1 or NRCs. Interestingly, RipE1-triggered immunity induces the accumulation of salicylic acid (SA) and the overexpression of several genes encoding phenylalanine-ammonia lyases (PALs), suggesting that the unconventional PAL-mediated pathway is responsible for the observed SA biosynthesis. Surprisingly, RipE1 recognition also induces the expression of jasmonic acid (JA)-responsive genes and JA biosynthesis, suggesting that both SA and JA may act cooperatively in response to RipE1. Finally, we found that RipE1 expression leads to the accumulation of glutathione in plant cells, which precedes the activation of immune responses. R. solanacearum encodes another effector, RipAY, which is known to inhibit immune responses by degrading cellular glutathione. Accordingly, we show that RipAY inhibits RipE1-triggered immune responses. This work shows a strategy employed by R. solanacearum to counteract the perception of its effector proteins by the plant immune system.


Sign in / Sign up

Export Citation Format

Share Document