scholarly journals Low Frequency Waves Detected in a Large Wave Flume under Irregular Waves with Different Grouping Factor and Combination of Regular Waves

Water ◽  
2018 ◽  
Vol 10 (2) ◽  
pp. 228 ◽  
Author(s):  
Luigia Riefolo ◽  
Pasquale Contestabile ◽  
Fabio Dentale ◽  
Guido Benassai
2012 ◽  
Vol 12 (12) ◽  
pp. 3811-3820 ◽  
Author(s):  
T.-W. Hsu ◽  
S.-J. Liang ◽  
B.-D. Young ◽  
S.-H. Ou

Abstract. For coastal risk mapping, it is extremely important to accurately predict wave run-ups since they influence overtopping calculations; however, nonlinear run-ups of regular waves on sloping structures are still not accurately modeled. We report the development of a high-order numerical model for regular waves based on the second-order nonlinear Boussinesq equations (BEs) derived by Wei et al. (1995). We calculated 160 cases of wave run-ups of nonlinear regular waves over various slope structures. Laboratory experiments were conducted in a wave flume for regular waves propagating over three plane slopes: tan α =1/5, 1/4, and 1/3. The numerical results, laboratory observations, as well as previous datasets were in good agreement. We have also proposed an empirical formula of the relative run-up in terms of two parameters: the Iribarren number ξ and sloping structures tan α. The prediction capability of the proposed formula was tested using previous data covering the range ξ ≤ 3 and 1/5 ≤ tan α ≤ 1/2 and found to be acceptable. Our study serves as a stepping stone to investigate run-up predictions for irregular waves and more complex geometries of coastal structures.


Author(s):  
Jesper Skourup ◽  
Martin J. Sterndorff

A method for deterministic reproduction of non-linear long-crested waves has been implemented. The model is used for non-linear reproduction of measured wave time series from a model test programme in a wave flume. Regular waves, irregular waves and focused waves have been reproduced with the model. Based on measured surface elevation time series at one location in the flume the elevation time series and the kinematics have been reproduced at another location using both linear theory and the second order model. The numerical results have been compared with measurements and it is found that the second order model is able to reproduce the correct shape of the waves as they propagate in the flume — even when the waves are highly non-linear.


Author(s):  
Qinghe Fang ◽  
Cunbao Zhao ◽  
Anxin Guo

Abstract People can simulate extreme hydrodynamic conditions in a laboratory facility by interfering a numbers of regular waves at a certain point in space and time, which is focused wave. It is obviously higher and steeper than any other wave, e.g. regular or irregular waves, within the propagating wave group. The focused wave occurs at a designed point both in space and time. It represents an event with a large return period which would take a long time to reproduce within a random wave sequence. The focused wave, representing of a large wave occurring in a random sea, is quite frequently used to investigate wave loading on marine or coastal structures. However, most research only employ one single focused wave group. Taking the randomness of the wave-structure interaction, repeated tests would be suggested by some textbooks or codes to eliminate the odd results. However, it would take more time to conduct those tests no matter in the laboratory or in the numerical simulations. In our present work, we use a novel method to experimentally generate several focused wave group with different focus time but same focus point at the same time to obtain multi-focused wave groups. The wave elevation and water particle kinematics are measured. The influence of peak frequency, frequency resolution and period of focused wave group are checked and discussed. The results show that present method can generate stable and repeatable focused wave groups in the wave flume.


Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 99 ◽  
Author(s):  
Jie Zhang ◽  
Michel Benoit ◽  
Olivier Kimmoun ◽  
Amin Chabchoub ◽  
Hung-Chu Hsu

The formation mechanism of extreme waves in the coastal areas is still an open contemporary problem in fluid mechanics and ocean engineering. Previous studies have shown that the transition of water depth from a deeper to a shallower zone increases the occurrence probability of large waves. Indeed, more efforts are required to improve the understanding of extreme wave statistics variations in such conditions. To achieve this goal, large scale experiments of unidirectional irregular waves propagating over a variable bottom profile considering different transition water depths were performed. The validation of two highly nonlinear numerical models was performed for one representative case. The collected data were examined and interpreted by using spectral or bispectral analysis as well as statistical analysis. The higher probability of occurrence of large waves was confirmed by the statistical distributions built from the measured free surface elevation time series as well as by the local maximum values of skewness and kurtosis around the end of the slope. Strong second-order nonlinear effects were highlighted as waves propagate into the shallower region. A significant amount of wave energy was transmitted to low-frequency modes. Based on the experimental data, we conclude that the formation of extreme waves is mainly related to the second-order effect, which is also responsible for the generation of long waves. It is shown that higher-order nonlinearities are negligible in these sets of experiments. Several existing models for wave height distributions were compared and analysed. It appears that the generalised Boccotti’s distribution can predict the exceedance of large wave heights with good confidence.


2016 ◽  
Vol 33 (2) ◽  
pp. 263-282 ◽  
Author(s):  
Clare E. Reimers ◽  
H. Tuba Özkan-Haller ◽  
Andrea T. Albright ◽  
Peter Berg

AbstractInterest in validating the eddy covariance (EC) technique under wave-induced flows led to a series of experiments in a 104-m-long large wave flume (LWF) using an acoustic Doppler velocimeter (ADV) and two oxygen microelectrodes (tips ~2 mm apart) mounted on a sturdy tripod. Four additional ADVs positioned within the flume provided comparative near-bed velocity measurements during experiments with irregular waves over a sand bed. These measurements revealed that modifications of local turbulence by the tripod frame were insignificant. However, errors in velocity measurements were at times observed for setups where the microelectrode tips protruded into the ADV’s measurement volume. Disparate oxygen microelectrode velocity effects (stirring sensitivities) combined with response time offsets were also identified as problems, adding biases to EC flux derivations. Microelectrode velocity effects were further investigated through modeling designed to mimic the LWF data, and through examination of a 12-h dataset from the Oregon shelf. The modeling showed that under progressive waves, an artificial EC flux, or bias, arises most severely when the velocity sensitivity of the microelectrode is unequal in opposing flow directions or augmented by horizontal currents, and the velocity and oxygen data are not perfectly aligned in time. Sensitivities to wave motions were seen in the oxygen measurements from the Oregon shelf, contributing to an average flux of +2.7 ± 0.6 mmol m−2 day−1 (SE, n = 22) at wave frequencies. Since overall EC fluxes equaled only −4.1 ± 1.8 mmol m−2 day−1 (SE, n = 22), sources of EC biasing coupled to waves cannot be ruled out as potential problems for estimating exact benthic oxygen fluxes under common continental shelf field conditions.


Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mauludi Manfaluthy

WHO (World Health Organization) concludes that not much effect is caused by electric field up to 20 kV / m in humans. WHO standard also mentions that humans will not be affected by the magnetic field under  100 micro tesla and that the electric field will affect the human body with a maximum standard of 5,000 volts per meter. In this study did not discuss about the effect of high voltage radiation SUTT (High Voltage Air Channel) with human health. The research will focus on energy utilization of SUTT radiation. The combination of electric field and magnetic field on SUTT (70-150KV) can generate electromagnetic (EM) and radiation waves, which are expected to be converted to turn on street lights around the location of high voltage areas or into other forms. The design of this prototype works like an antenna in general that captures electromagnetic signals and converts them into AC waves. With a capacitor that can store the potential energy of AC and Schottky diode waves created specifically for low frequency waves, make the current into one direction (DC). From the research results obtained the current generated from the radiation is very small even though the voltage is big enough.Keywords : Radiance Energy, Joule Thief, and  LED Module.


Author(s):  
Б. Дивинский ◽  
B. Divinskiy ◽  
И. Грюне ◽  
I. Gryune ◽  
Р. Косьян ◽  
...  

Acoustic methods belong to contactless measurement means, possess high spatial and time resolution. Thus, the use of multifrequency allows directly profile both concentration and granulometric structure of the suspended substances. In 2008 in the Big Wave Flume (Hanover, Germany) by efforts of the Russian and German scientists there have been carried out the experiment on studying the bottom material suspension laws under the influence of irregular waves. The Aquascat 1000 acoustic back scattering sensor (ABS) manufactured by British company Aquatec (www.aquatecsubsea.com), equipped by a three-frequency transmitter with frequencies 1,0, 2,0 and 3,84 MHz, has been set on distance of 0,75 m from the bottom and 111 m from wave generator at the total depth of 3,2 m. Several dozen series of measurements at various parameters of surface waves have been carried out. The general picture of suspension is so that the external dynamic influence (currents, wave movements, turbulence, gravitation forces) creates a non-uniform field (gradient) of the suspended particles and in most cases due to this the average size of particles undergoes to the spatial-time variations. For this reason while defining the mass concentration of suspended sediment, using the single frequency transmitter there is necessity for numerous definition of the suspension granulometric structure what by isn’t always possible. If two and more frequencies are used the observed results comparison can give the information on average diameters of particles and on that basis the calculation of suspended sediment concentration is possibleLet's emphasize the basic advantages of back scattering acoustic gauges usage: – Obtaining the particles sizes and concentration distribution profiles is possible; – The initial granulometric structure of bottom sediments can be unknown (at use of several frequencies). The following can be referred to some lacks of the device: – The system should be calibrated in laboratory conditions; – In a positive feedback conditions the iterative computing process can converge to zero or to infinity. In this case experiments with a variation of carrier frequencies chosen for the analysis allow partially solve the problem (say experiments with different frequencies pairs, as 2/1 of MHz or 4/2 MHz).


2021 ◽  
Vol 9 (2) ◽  
pp. 114
Author(s):  
Dag Myrhaug ◽  
Muk Chen Ong

This article derives the time scale of pipeline scour caused by 2D (long-crested) and 3D (short-crested) nonlinear irregular waves and current for wave-dominant flow. The motivation is to provide a simple engineering tool suitable to use when assessing the time scale of equilibrium pipeline scour for these flow conditions. The method assumes the random wave process to be stationary and narrow banded adopting a distribution of the wave crest height representing 2D and 3D nonlinear irregular waves and a time scale formula for regular waves plus current. The presented results cover a range of random waves plus current flow conditions for which the method is valid. Results for typical field conditions are also presented. A possible application of the outcome of this study is that, e.g., consulting engineers can use it as part of assessing the on-bottom stability of seabed pipelines.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1395
Author(s):  
Danila Kostarev ◽  
Dmitri Klimushkin ◽  
Pavel Mager

We consider the solutions of two integrodifferential equations in this work. These equations describe the ultra-low frequency waves in the dipol-like model of the magnetosphere in the gyrokinetic framework. The first one is reduced to the homogeneous, second kind Fredholm equation. This equation describes the structure of the parallel component of the magnetic field of drift-compression waves along the Earth’s magnetic field. The second equation is reduced to the inhomogeneous, second kind Fredholm equation. This equation describes the field-aligned structure of the parallel electric field potential of Alfvén waves. Both integral equations are solved numerically.


Sign in / Sign up

Export Citation Format

Share Document