scholarly journals Development of a Combined Aerobic–Anoxic and Methane Oxidation Bioreactor System Using Mixed Methanotrophs and Biogas for Wastewater Denitrification

Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1377 ◽  
Author(s):  
I-Tae Kim ◽  
Ye-Eun Lee ◽  
Yeong-Seok Yoo ◽  
Wonsik Jeong ◽  
Young-Han Yoon ◽  
...  

We developed a lab-scale aerobic–methane oxidation bioreactor (MOB)–anoxic system, combining a MOB and the aerobic–anoxic denitrification process, and evaluated its potential for advanced nitrogen treatment in wastewater treatment plants (WWTPs). The MOB used biogas generated from a WWTP and secondary-treated wastewater to support mixed methanotroph cultures, which mediated the simultaneous direct denitrification by methanotrophs and methanol production necessary for denitrifying bacteria in the anoxic chamber for denitrification. Compared to the aerobic–anoxic process, the aerobic–MOB–anoxic system with an influent concentration of 4.8 L·day−1 showed a marked increase in the reduction efficiency for total nitrogen (41.9% vs. 85.9%) and PO4−3-P (41.1% vs. 69.5%). However, the integrated actions of high nitrogen and phosphorus consumption are required for methanotroph growth, as well as the production and supply of methanol as a carbon source for denitrification and methane monooxygenase-mediated oxidation of NH3 into N2O by methanotrophs. After three months of continuous operation using actual wastewater, the total nitrogen removal rate was 76.3%, equivalent to the rate observed in a tertiary-advanced WWTP, while the total phosphorus removal rate reached 83.7%.

2021 ◽  
Vol 11 (4) ◽  
pp. 1889 ◽  
Author(s):  
Agnieszka Micek ◽  
Krzysztof Jóźwiakowski ◽  
Michał Marzec ◽  
Agnieszka Listosz ◽  
Tadeusz Grabowski

The results of research on the efficiency and technological reliability of domestic wastewater purification in two household wastewater treatment plants (WWTPs) with activated sludge are presented in this paper. The studied facilities were located in the territory of the Roztocze National Park (Poland). The mean wastewater flow rate in the WWTPs was 1.0 and 1.6 m3/day. In 2017–2019, 20 series of analyses were done, and 40 wastewater samples were taken. On the basis of the received results, the efficiency of basic pollutant removal was determined. The technological reliability of the tested facilities was specified using the Weibull method. The average removal efficiencies for the biochemical oxygen demand in 5 days (BOD5) and chemical oxygen demand (COD) were 66–83% and 62–65%, respectively. Much lower effects were obtained for total suspended solids (TSS) and amounted to 17–48%, while the efficiency of total phosphorus (TP) and total nitrogen (TN) removal did not exceed 34%. The analyzed systems were characterized by the reliability of TSS, BOD5, and COD removal at the level of 76–96%. However, the reliability of TN and TP elimination was less than 5%. Thus, in the case of biogenic compounds, the analyzed systems did not guarantee that the quality of treated wastewater would meet the requirements of the Polish law during any period of operation. This disqualifies the discussed technological solution in terms of its wide application in protected areas and near lakes, where the requirements for nitrogen and phosphorus removal are high.


RSC Advances ◽  
2015 ◽  
Vol 5 (73) ◽  
pp. 59326-59334 ◽  
Author(s):  
A. Chen ◽  
Y. Chen ◽  
C. Ding ◽  
H. Liang ◽  
B. Yang

The presence of 2 and 5 mg L−1of tetracycline decreased total nitrogen removal. Tetracycline induced EPS release and decreased its protective role on cells. Denitrifiers instead of nitrifiers were negatively affected by tetracycline.


2007 ◽  
Vol 55 (8-9) ◽  
pp. 59-65 ◽  
Author(s):  
A. Onnis-Hayden ◽  
P.B. Pedros ◽  
J. Reade

An experimental study investigating the nitrogen removal efficiency from the recycle stream generated in the dewatering facility of the anaerobically digested sludge at the Deer Island wastewater treatment plant (WWTP) in Boston was conducted using a single submerged attached growth bioreactor (SAGB), designed for simultaneous nitrification and denitrification. The applied nitrogen loading to the reactor ranged from 0.7 to 2.27 kg-N/m3·d, and the corresponding total nitrogen (TN) removal rate ranged from 0.38 to 1.8 kg-N/m3·d. The observed nitrification rates varied from 0.42 kg-N/m3·d to 1.45 kg-N/m3·d with an ammonia load of 0.5 kg-N/m3·d and 1.8 kg-N/m3·d, respectively. An average nitrification efficiency of 91% was achieved throughout the experiment. Denitrification efficiency varied from 55%, obtained without any addition of carbon source, to 95% when methanol was added in order to obtain a methanol/nitrate ratio of about 3 kg methanol/kg NO3−-N.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1414 ◽  
Author(s):  
I-Tae Kim ◽  
Young-Seok Yoo ◽  
Young-Han Yoon ◽  
Ye-Eun Lee ◽  
Jun-Ho Jo ◽  
...  

The development of cost-effective methods, which generate minimal chemical wastewater, for methanol production is an important research goal. In this study, treated wastewater (TWW) was utilized as a culture solution for methanol production by mixed methanotroph species as an alternative to media prepared from commercial or chemical agents, e.g., nitrate mineral salts medium. Furthermore, a realistic alternative for producing methanol in wastewater treatment plants using biogas from anaerobic digestion was proposed. By culturing mixed methanotroph species with nitrate and phosphate-supplemented TWW in municipal wastewater treatment plants, this study demonstrates, for the first time, the application of biogas generated from the sludge digester of municipal wastewater treatment plants. NaCl alone inhibited methanol dehydrogenase and the addition of 40 mM formate as an electron donor increased methanol production to 6.35 mM. These results confirmed that this practical energy production method could enable cost-effective methanol production. As such, methanol produced in wastewater treatment plants can be used as an eco-friendly energy and carbon source for biological denitrification, which can be an alternative to reducing the expenses required for the waste water treatment process.


2006 ◽  
Vol 54 (10) ◽  
pp. 87-93 ◽  
Author(s):  
T. Hashimoto ◽  
K. Takahashi ◽  
T. Murakami

Since the natural estrogens 17 β-estradiol (E2) and estron (E1), and the synthetic estrogen 17 α-ethynyl estradiol (EE2) have strong endocrine disrupting effects and the tendency to persist in effluent from wastewater treatment plants, effective measures are needed to remove them from wastewater. In this research, to gain an understanding of the characteristics of estrogen decomposition by ozonation, experiments were conducted using effluent from an actual wastewater treatment plant. In this experiment, estrogen was added to effluent at a concentration of 200 ng/l and 20 ng/l before the ozonation experiments. The results showed 90% or more of estrogen concentration and estrogenic activity of E2, E1 and EE2 to be removed at an ozone dose of 1 mg/l. At an ozone dose of 3 mg/l, the estrogen concentration and estrogenic activity of E2, E1 and EE2 in the treated water fell below the detection limit. The removal rate was not influenced by the kind of estrogen. No generation of byproducts with estrogenic activity was observed. The authors conclude that estrogen in secondary treated wastewater can be almost entirely removed at the practical ozone dose rate applied for the purpose of disinfection, which is up to about 5 mg/l.


2013 ◽  
Vol 68 (8) ◽  
pp. 1751-1756 ◽  
Author(s):  
Po-Heng Lee ◽  
Wonji Kwak ◽  
Jeaho Bae ◽  
Perry L. McCarty

Autotrophic nitrogen removal, coupling nitritation (ammonium to nitrite) with anaerobic ammonium oxidation (anammox), offers a promising nitrogen-removal alternative, especially for post-treatment of anaerobically-treated wastewater. However, previous reports suggest that less than 90% total nitrogen removal should be expected with this process alone because over 10% of the ammonium removed will be converted to nitrate. This is caused because nitrite conversion to nitrate is required for reduction of carbon dioxide to cell carbon. However, recent research results suggest that more limited nitrate formation of only a few per cent sometimes occurs. It was hypothesized such lower nitrate yields may result from use of long solids retention times (SRT) where net biological yields are low, and providing that the ratio of oxygen added to influent ammonium concentrations is maintained at or below 0.75 mol/mol. Overall reaction equations were developed for each process and combined to evaluate the potential effect of SRT on process stoichiometry. The results support the use of a long SRT to reduce net cell yield, which in turn results in a small percentage conversion to nitrate during ammonium removal and high total nitrogen removals in the range of 90 to 94%.


2017 ◽  
Vol 76 (12) ◽  
pp. 3468-3477 ◽  
Author(s):  
Weixing Mi ◽  
Jianqiang Zhao ◽  
Xiaoqian Ding ◽  
Guanghuan Ge ◽  
Rixiang Zhao

Abstract To investigate the characteristics of anaerobic ammonia oxidation for treating low-ammonium wastewater, a continuous-flow completely autotrophic nitrogen removal over nitrite (CANON) biofilm reactor was studied. At a temperature of 32 ± 1 °C and a pH between 7.5 and 8.2, two operational experiments were performed: the first one fixed the hydraulic retention time (HRT) at 10 h and gradually reduced the influent ammonium concentrations from 210 to 50 mg L−1; the second one fixed the influent ammonium concentration at 30 mg L−1 and gradually decreased the HRT from 10 to 3 h. The results revealed that the total nitrogen removal efficiency exceeded 80%, with a corresponding total nitrogen removal rate of 0.26 ± 0.01 kg N m−3 d−1 at the final low ammonium concentration of 30 mg L−1. Small amounts of nitrous oxide (N2O) up to 0.015 ± 0.004 kg m−3 d−1 at the ammonium concentration of 210 mg L−1 were produced in the CANON process and decreased with the decrease in the influent ammonium loads. High-throughput pyrosequencing analysis indicated that the dominant functional bacteria ‘Candidatus Kuenenia’ under high influent ammonium levels were gradually succeeded by Armatimonadetes_gp5 under low influent ammonium levels.


2018 ◽  
Vol 04 (02) ◽  
pp. 1750008 ◽  
Author(s):  
A. Bellver-Domingo ◽  
F. Hernández-Sancho

The use of effluents from wastewater treatment plants (WWTPs) as a non-conventional source of water for wetlands in arid and semi-arid regions is becoming the most-often sought solution for maintaining water flow in sensitive wetlands there. However, the managing effluent quality should be a requirement because excess nutrients (mainly nitrogen and phosphorus) can generate eutrophication problems in wetlands. In the Mediterranean area in general, wetlands are strongly vulnerable to eutrophication, which is why they are classified as sensitive areas. Our study uses a data set from 24 WWTPs, effluents of which are discharged to wetlands in the coast of Community of Valencia. We use the shadow prices methodology to quantify the environmental avoided costs and the environmental benefit (both in monetary units) of nitrogen and phosphorus removal in wastewater effluent. The results highlight the importance of reducing these pollutants in WWTP effluents for maintaining the suitable water quality in wetlands. Our study demonstrates the potential for using shadow prices methodology for monetary valuation of environmental externalities in wetlands that use treated wastewater as a non-conventional water source.


1993 ◽  
Vol 27 (5-6) ◽  
pp. 343-355 ◽  
Author(s):  
H. Draaijer ◽  
A. H. M. Buunen-van Bergen ◽  
E. van't Oever ◽  
A. A. J. C. Schellen

Two full scale projects are described in this paper; these are the Bergambacht wastewater plant (carrousel) and the Terneuzen wastewater plant (Schreiber system). Both plants use a system of intermittent aeration to combine nitrification and denitrification processes. At the Bergambacht plant biological phosphorus removal is carried out by the introduction of the side stream process. At the Terneuzen plant it is carried out by introducing anaerobic periods in the aeration tanks. The objective is to meet the new total nitrogen and phosphorus effluent standards in The Netherlands of resp. 10-15 and 1-2 mg/l. At the Terneuzen wastewater plant the standards could not be reached for total-nitrogen, mainly due to the low BOD to Kj-N ratio of 2:8 in the feed to the aeration tanks. Adjustments are suggested to improve the denitrification rate. At the Bergambacht wastewater plant effluent concentrations of 6 - 7 mg/l total N and 0.3 mg/l total P were achieved.


2000 ◽  
Vol 42 (12) ◽  
pp. 137-147 ◽  
Author(s):  
C.F. Ouyang ◽  
R.J. Chiou ◽  
C.T. Lin

Previous research has shown that nitrogen from municipal wastewater could be eliminated by a biofilter system. In this study a system of combined pre-denitrification/nitrification biofilters was set up. It is to investigate the effect of the hydraulic loading and recycled ratio on nitrogen removal. The characteristics of bacterial activity at different heights is discussed. The experiment shows that longer hydraulic loading would result in better total nitrogen removal. Total nitrogen removal might be not dependent on denitrification but nitrification. Hydraulic loading that affects nitrification might be due to the diffusion of NH3–N from the bulk solution to the inner biofilm. The recycling NO3–N could be completely eliminated in the anoxic biofilter. The operation with longer retention time (HRT of 12 hours) would result in inner denitrification in the aerobic biofilter. Biological activity could be determined by the distribution of bacteria. The specific rates of pollutant decomposition depend on biological activity and effective biological VSS. The effect of the recycled ratio on the nitrogen removal is significant. Total nitrogen removal rate and nitrogen type of effluent would be determined by recycle ratio. The operation at low recycled ratio would result in worse total nitrogen removal, but the NH3–N of effluent would be lower. The operation in higher recycle ratio would be opposite to low recycle ratio.


Sign in / Sign up

Export Citation Format

Share Document