scholarly journals Understanding the Influence of Rock Content on Streaming Potential Phenomenon of Soil–Rock Mixture: An Experimental Study

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 585
Author(s):  
Xin Zhang ◽  
Mingjie Zhao ◽  
Kui Wang

To applicate streaming potential phenomenon to study the seepage feature in the soil–rock mixture (SRM), research on the variation in the streaming potential phenomenon of SRM is the precondition. This paper deals, in assistance with the streaming potential test apparatus, with the streaming potential effect response of SRM subjected to different rock contents. The test results show that when the rock content increases from 10% to 30%, the streaming potential coupling coefficient increases with the increases in rock content at 85% compactness and 0.01 mol L−1 salinity. When the rock content is more than 30%, the streaming potential coupling coefficient decreases with the increases in rock content. As the rock content increases, the permeability coefficient has a negative correlation with the streaming potential coupling coefficient. The streaming potential increases first and then goes down with the increases in rock content, and the streaming potential decreases significantly when the rock content exceeds 50%. The findings indicate that the rock content is the key structural factor that restricts the streaming potential phenomenon of the SRM.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xin Zhang ◽  
Mingjie Zhao ◽  
Kui Wang

The streaming potential effect in soil-rock mixture (SRM) is related to the compactness and rock content, but there is no model to quantitatively describe this behavior. In this paper, the Kozeny–Carman (KC) equation is modified by using the compactness and rock content. Then, the modified KC equation is substituted into the equation of streaming potential coupling coefficient. A new modified model of streaming potential coupling coefficient that depends on the compactness, rock content, particle shape, and particle gradation is proposed. The reliability of the new modified model is tested by experiments, and the applicable scope of the model is obtained. The results show that when the rock content is 30%, the permeability coefficient prediction accuracy of the modified KC equation is higher in the range of 85–95% compactness. The new modified model of the streaming potential coupling coefficient represents well the control of the compactness (75–95%) on the coupling coefficient. When the compactness remains 85%, the permeability coefficient calculated by the modified KC equation in the range of 10–70% rock content is consistent with the experimental data. The influence of the rock content (10–90%) on the coupling coefficient is well described by the new modified model of the streaming potential coupling coefficient. The new modified model of streaming potential coupling coefficient is helpful to quantitatively evaluate the internal structure evolution of embankment dam by using streaming potential phenomenon.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2071
Author(s):  
Xin Zhang ◽  
Mingjie Zhao ◽  
Kui Wang

The study on the effect of material structure and solution properties on the streaming potential of the soil–rock mixture (SRM) will be beneficial for improving the reliability of the measurement results for self-potential monitoring in embankment dams. We design two experimental groups and investigate the changes of potential and pressure during seepage of SRM (slightly clay materials) with different compactness and different concentration. The effects of the compaction degree and solution concentration on the streaming potential coupling coefficient and streaming potential were analyzed. The test results demonstrate that when the clay content in soil matrix is slight, the potential has a linear relationship with the hydraulic head difference, and seepage obeys Darcy’s law. The surface conductivity is negligible at 0.01 M (1 M corresponds to a concentration of 58.4 g L−1) salinity, the compactness of the SRM decreases (the permeability coefficient increases), the apparent streaming potential coupling coefficient and pressure difference decrease is the reason streaming potential decreases. The permeability coefficient of the SRM is not affected by the change in salinity (0.0001–1 M) at 85% compactness, and its seepage characteristics are related to the mineral composition, morphology and the thickness of the bound water layer (electric double layer). This study lays a foundation for further research on the self-potential method to monitor the structure of embankment dams.


2018 ◽  
Vol 53 ◽  
pp. 04021
Author(s):  
SHAO Yong ◽  
LIU Xiao-li ◽  
ZHU Jin-jun

Industrial alkali slag is the discharge waste in the process of alkali production. About one million tons of alkali slag is discharged in China in one year. It is a burden on the environment, whether it is directly stacked or discharged into the sea. If we can realize the use of resources, it is a multi-pronged move, so alkali slag is used to improve solidified marine soft soil in this paper. The test results show that the alkali residue can effectively improve the engineering properties of marine soft soil. Among them, the unconfined compressive strength and compressive modulus are increased by about 10 times, and the void ratio and plasticity index can all reach the level of general clay. It shows that alkali slag has the potential to improve marine soft soil and can be popularized in engineering.


2015 ◽  
Vol 60 (4) ◽  
pp. 2821-2826 ◽  
Author(s):  
A. Wierzba ◽  
S. Mróz ◽  
P. Szota ◽  
A. Stefanik ◽  
R. Mola

The paper presents the results of the experimental study of the three-layer Al-Mg-Al sheets rolling process by the ARB method. The tests carried out were limited to single-pass symmetric and asymmetric rolling processes. An Al-Mg-Al package with an initial thickness of 4 mm (1-2-1 mm) was subjected to the process of rolling with a relative reduction of 50%. To activate the shear band in the strip being deformed, an asymmetry factor of av=2 was applied. From the test results, an increase in the tensile strength of the multi-layer Al-Mg-Al sheets obtained from the asymmetric process was observed. Microhardness tests did not show any significant differences in aluminium layer between respective layers of sheets obtained from the symmetric and the asymmetric process. By contrast, for the magnesium layer, an increase in microhardness from 72 HV to 79 HV could be observed for the asymmetric rolling. The analysis of the produced Al-Mg-Al sheets shows that the good bond between individual layers and grain refinement in the magnesium layer contributed to the obtaining of higher mechanical properties in the multi-layer sheets produced in the asymmetric process compared to the sheets obtained from the symmetric process.


2010 ◽  
Vol 97-101 ◽  
pp. 1863-1866
Author(s):  
Liang Yang ◽  
Li Xu

Performance of tool has always been a puzzle in the course of high manganese steel drilling. In this paper, improvement of drill tool is been done on drill bit structure and parameters of cutting tip by means of analyzing geometric parameter. By utilizing simulation method correctly, the influence of bit parameter on drilling force is analyzed. Meanwhile, by adopting the way of dividing into groups, comparison experiment between improved and no improved has been done. The comparison analysis of test results is carried out including tool life, wear and drilling force. The conclusion showed that the improved bit has better performance.


2012 ◽  
Vol 516-517 ◽  
pp. 1870-1873 ◽  
Author(s):  
Jun Wang ◽  
Heng Shan Hu

The electrokinetic effects are important in the understanding of electric properties in porous medium. In this study, the streaming potential and streaming current of saturated samples are measured at different concentrations, then three methods are applied to obtain the zeta-potential and electrokinetic coupling coefficient. The study shows that the results obtained from streaming potential and streaming current methods agree well with each other, but the results obtained from simplified streaming potential method become seriously inaccurate at low concentrations due to the influence of surface conductance. This experimental study also provides a reliable estimate of the surface conductivity and its contribution to zeta-potential at given concentrations.


Author(s):  
Harish R ◽  
Ramesh S ◽  
Tharani A ◽  
Mageshkumar P

This paper presents the results of an experimental investigation of the compressive strength of concrete cubes containing termite mound soil. The specimens were cast using M20 grade of concrete. Two mix ratios for replacement of sand and cement are of 1:1.7:2.7 and 1:1.5:2.5 (cement: sand: aggregate) with water- cement ratio of 0.45 and varying combination of termite mound soil in equal amount ranging from 30% and 40% replacing fine aggregate (sand) and cement from 10%,15%,20% were used. A total of 27 cubes, 18 cylinders and 6 beams were cast by replacing fine aggregate, specimens were cured in water for 7,14 and 28 days. The test results showed that the compressive strength of the concrete cubes increases with age and decreases with increasing percentage replacement of cement and increases with increasing the replacement of sand with termite mound soil cured in water. The study concluded that termite mound cement concrete is adequate to use for construction purposes in natural environment.


2017 ◽  
Vol 902 ◽  
pp. 33-40
Author(s):  
Cong Thuat Dang ◽  
Ngoc Hieu Dinh

Old reinforced concrete buildings constructed around 1980’s in many developing countries have been designed against mainly gravity load. Beam-column joints in these buildings contain slightly or no shear reinforcement inside the panel zones due to the construction convenience, and are vulnerable to shear failure in beam-column joints under the action of earthquake loads, especially for the exterior beam-column joints. This experimental study aimed to investigate the seismic performance of five half-scale exterior beam-column joints simulating the joints in existing reinforced-concrete buildings with non-shear hoop details. The test results showed that the structural performances of the beam-column joints under earthquake including failure mode, load-drift ratio relationship, shear strain of the joints and energy dissipation are strongly affected by the amount of longitudinal reinforcing bars of beams.


2005 ◽  
Vol 40 (6) ◽  
pp. 571-586 ◽  
Author(s):  
Y Liu ◽  
J Lin ◽  
T. A Dean ◽  
D. C. J Farrugia

During axisymmetric hot tensile testing, necking normally takes place due to the thermal gradient and the accumulation of microdamage. This paper introduces an integrated technique to predict the damage and necking evolution behaviour. Firstly, a set of multiaxial mechanism-based unified viscoplastic-damage constitutive equations is presented. This equation set, which models the evolution of grain boundary (intragranular) and plasticity-induced (intergranular) damage, is determined for a free-cutting steel tested over a range of temperatures and strain rates on a Gleeble thermomechanical simulator. This model has been implemented using the CREEP subroutine of the commercial finite element (FE) solver ABAQUS. Numerical procedures to simulate axisymmetric hot tensile deformation are developed with consideration of the thermal gradient along the axis of the tensile testpiece. FE simulations are carried out to reproduce the necking phenomenon and the evolution of plasticity-induced and grain boundary damage. The simulated results have been validated with experimental tensile test results. The effects of necking and its associated stress state on flow stress and ductility are investigated. The flow stress and ductility data obtained from a Gleeble material simulator under various hot deformation conditions have also been numerically studied.


2014 ◽  
Vol 487 ◽  
pp. 404-407
Author(s):  
Dong Liang ◽  
Zi Shuo Li

Oil dampers are widely used as a popular countermeasure to mitigate the stay cables vibration. In this study, one actual oil damper designed for some long cable-stayed was experimentally investigated to evaluate the durability. 4 million cycles loading, with frequency of 4 Hz and amplitude of 1 mm, was imposed on the damper. The excitation displacement and damping force were measured and the equivalent damping was calculated from the experimental results. The stiffness effects of dampers behaved during durability tests were also analyzed quantitatively. The test results showed that the dampers were still in good condition after 4 million cycles loading and the dampers temperatures were stable at 50 degree centigrade during the test. According to the durability test results, a model for performance deterioration of damper was proposed to predict the lifetime of oil dampers.


Sign in / Sign up

Export Citation Format

Share Document