scholarly journals Large-Volume Samplers for Efficient Composite Sampling and Particle Characterization in Sewer Systems

Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2831
Author(s):  
Jan Philip Nickel ◽  
Stephan Fuchs

The assessment of pollution from sewer discharges requires flexible and reliable sampling methods. The characteristics of the sampling system must be known to allow comparison with other studies. Large volume samplers (LVS) are increasingly used for monitoring in sewer systems and surface waters. This article provides a comprehensive description of this widely applicable sampling system, gives insight into its comparability to standard methods, and provides recommendations for researchers and practitioners involved in water quality monitoring and urban water management. Two methods for subsampling from LVS are presented, i.e., collection of homogenized or sedimented samples. Results from a sampling campaign at combined sewer overflows (CSOs) were used to investigate the comparability of both subsampling methods and conventional autosamplers (AS). Event mean concentrations (EMC) of total suspended solids (TSS) derived from homogenized LVS samples and AS pollutographs were comparable. TSS-EMC of homogenized and sedimented LVS samples were also comparable. However, differences were found for particle size distribution and organic matter content. Consequently, sedimented LVS samples, which contained solids masses in the range of 3–70 g, are recommended to be used for particle characterization. The differences between homogenized and sedimented LVS samples, e.g., the quality of homogenization and the stability of samples during sedimentation in LVS, should be further investigated. Based on LVS results, average TSS concentrations of 50–60 mg/L were found for CSOs from centralized treatment facilities in Bavaria. With a median share of 84%, particles <63 µm were the dominant fraction.

Jurnal Solum ◽  
2012 ◽  
Vol 9 (1) ◽  
pp. 44
Author(s):  
Yulnafatmawita Yulnafatmawita ◽  
Asmar Asmar ◽  
Vitria Purnamasari

There is no much public concern about soil aggregate stability improvement of a soil.  This is due to the fact that it does not directly affect crop yield for a short term, but it determines sustainable agriculture and development for a long term.  This research was aimed to investigate soil physical properties especially soil aggregate stability of Ultisols after fresh OM application, then to determine the exact OM dosage to improve the stability.  Ultisols used was from Limau Manis (± 367 m asl), an area in lower footslope of Mount Gadut, having wet tropical rainforest. Due to land use change, farming activities in that sloping area could enhance erosion process in the environment.  Therefore, efforts to anticipate the erosion must be found.  Fresh OM applied was Gliricidia sepium which was found plenty in the area.  Five levels of fresh Gliricidia sepium, were 0, 5, 10, 15, and 20 t/ha.  Top soil (0-20 cm depth) was mixed with OM, then incubated for 3 months in glasshouse.  The results after a 3-month incubation showed that SOM content did not statistically increase, but it improved based on the criteria, from very low to low level as OM was applied for ≥ 10 t/ha. It seemed that 10 t/ha Gliricidia sepium was the best dosage at this condition. There was a positive correlation between SOM content and aggregate stability index of Ultisols after fresh Gliricidia sepium addition.Keywords: Ultisols, soil aggregate stability, soil organic matter content


Soil Research ◽  
2006 ◽  
Vol 44 (1) ◽  
pp. 11 ◽  
Author(s):  
Chengxing Chu ◽  
Chuxia Lin ◽  
Yonggui Wu ◽  
Wenzhou Lu ◽  
Jie Long

A column experiment was conducted to examine the effects of added organic matter and thickness of surface water on the stability of jarosite in a coastal acid sulfate soil. The results show that dissolution of jarosite was negligible if no organic matter was added onto the soil. However, where organic matter was added onto the soils, the acidity and the concentrations of iron and sulfate in the leachate of the soil increased following water inundation, indicating the decomposition of jarosite in such conditions. Probably, the organic matter content of the soil was originally too low to enable the creation of reducing conditions that could sufficiently cause the breakdown of jarosite contained in the soil. Under the experimental conditions, the amount of added organic matter played a more important role than the thickness of the overlying water in the dissolution of jarosite.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ruilin Huang ◽  
Thomas W. Crowther ◽  
Yueyu Sui ◽  
Bo Sun ◽  
Yuting Liang

AbstractIrreversible climate change alters the decomposition and sequestration of soil carbon (C). However, the stability of C components in soils with different initial organic matter contents and its relationship with the response of major decomposers to climate warming are still unclear. In this study, we translocated Mollisols with a gradient of organic matter (OM) contents (2%–9%) from in situ cold region to five warmer climatic regions to simulate climate change. Soil C in C-rich soils (OM >5%) was more vulnerable to translocation warming than that in C-poor soils (OM ≤ 5%), with a major loss of functional groups like O-alkyl, O-aryl C and carboxyl C. Variations of microbial β diversity with latitude, temperature and precipitation indicated that C-rich soils contained more resistant bacterial communities and more sensitive fungal communities than C-poor soils, which led to strong C metabolism and high utilization ability of the community in C-rich soils in response to translocation warming. Our results suggest that the higher sensitivity of soils with high organic matter content to climate change is related to the stability and metabolic capacity of major bacterial decomposers, which is important for predicting soil-climate feedback.


2022 ◽  
Vol 42 ◽  
pp. 02005
Author(s):  
Rustam Gakaev

The spatial variability of the stability of soil aggregates and its relationship with runoff and soil erosion were studied in a semi-arid environment in the field in order to assess the validity of the stability of structures as an indicator of soil erosion in soils of sandy loam ridges. The influence of soil and relief properties on the variability of aggregate stability was also investigated. Significant relationships were found in the number of water droplets required to break down the aggregate, as well as the rate of runoff and erosion. The most significant correlation was found between the number of droplet impacts and the soil organic matter content. The stability of aggregates in the upper soil layer is apparently a valuable indicator of field runoff and inter-season soil erosion of sandy loamy ridges in semi-arid conditions.


Author(s):  
O. A. Lipatnikova

The study of heavy metal speciation in bottom sediments of the Vyshnevolotsky water reservoir is presented in this paper. Sequential selective procedure was used to determine the heavy metal speciation in bottom sediments and thermodynamic calculation — to determine ones in interstitial water. It has been shown that Mn are mainly presented in exchangeable and carbonate forms; for Fe, Zn, Pb и Co the forms are related to iron and manganese hydroxides is played an important role; and Cu and Ni are mainly associated with organic matter. In interstitial waters the main forms of heavy metal speciation are free ions for Zn, Ni, Co and Cd, carbonate complexes for Pb, fulvate complexes for Cu. Effects of particle size and organic matter content in sediments on distribution of mobile and potentially mobile forms of toxic elements have been revealed.


Author(s):  
Amita M Watkar ◽  

Soil, itself means Soul of Infinite Life. Soil is the naturally occurring unconsolidated or loose covering on the earth’s surface. Physical properties depend upon the amount, size, shape, arrangement, and mineral composition of soil particles. It also depends on the organic matter content and pore spaces. Chemical properties depend on the Inorganic and organic matter present in the soil. Soils are the essential components of the environment and foundation resources for nearly all types of land use, besides being the most important component of sustainable agriculture. Therefore, assessment of soil quality and its direction of change with time is an ideal and primary indicator of sustainable agricultural land management. Soil quality indicators refer to measurable soil attributes that influence the capacity of a soil to function, within the limits imposed by the ecosystem, to preserve biological productivity and environmental quality and promote plant, animal and human health. The present study is to assess these soil attributes such as physical and chemical properties season-wise.


2017 ◽  
Vol 13 (2) ◽  
pp. 74-77
Author(s):  
Imelda J Lawalatta ◽  
Francina Matulessy ◽  
Meitty L Hehanussa

Chili (Capsicum annum L.) often experience the highest price fluctuations in Indonesia. This is caused by the production that is often disrupted in certain months, especially in the months in the rainy season due to flowers and fruits that fall before the harvest. Since agricultural land has changed its function for infrastructure development, marginal land (Ultisol) is used. The ultisol problem is: high acidity, low organic matter content, nutrient deficiency important for plants (eg N, P, Ca, Mg and Mo) and high solubility of Al, Fe and Mn. The provision of organic materials such as manure and marine mud will overcome the problem of acid-rich mineral soil and play an important role in improving, increased and maintaining sustainable land productivity. Research results for chili flower significantly. the highest number of flowers found in the treatment of L0P3, L1P2, L1P3 and L2P3 that is > 60 flower/plant. There was a single factor effect for the amount of fruit, mostly found in L3 treatment (600 ton/ha marine mud) that is 22.36 fruit/plant. The treatment of manure significantly influenced the formation of the most fruit set in the treatment of P0 and P2 (without manure and manure 20 ton/ha) that is 77.60% and 70.,45%. Keywords: Ultisol, Marine mud, Manure, Flowers and Fruit sets   ABSTRAK Tanaman cabai besar (Capsicum annum L.) sering mengalami fluktuasi harga paling tinggi di Indonesia. Hal tersebut disebabkan oleh produksi yang sering terganggu pada bulan tertentu terutama pada bulan-bulan di musim penghujan dikarenakan bunga dan buah yang rontok sebelum panen. Karena lahan pertanian banyak beralih fungsinya untuk pembangunan infrastuktur, maka digunakan lahan marginal (Ultisol). Masalah ultisol ialah: kemasaman tinggi, kadar bahan organik yang rendah, kekurangan unsur hara penting bagi tanaman (contoh: N, P, Ca, Mg dan Mo) serta tingginya kelarutan Al, Fe dan Mn. Pemberian bahan organik seperti pupuk kandang dan Lumpur laut akan mengatasi persoalan tanah mineral masam berkadar Al tinggi dan berperan penting dalam memperbaiki, meningkatkan serta mempertahankan produktifitas lahan secara berkelanjutan Hasil Penelitian untuk jumlah bunga cabai berpengaruh signifikan. jumlah bunga terbanyak terdapat pada perlakuan L0P3, L1P2, L1P3 dan L2P3 yaitu > 60 bunga/tanaman. Terjadi pengaruh faktor tunggal untuk jumlah buah, terbanyak terdapat pada perlakuan L3 ( 600 ton/ha lumpur laut) yaitu 22,36 buah/tanaman. Perlakuan pupuk kandang berpengaruh signifikan Pembentukan fruit set terbanyak pada perlakuan P0 dan P2 (tanpa pupuk kandang dan pupuk kandang 20 ton/ha) yaitu 77,60% dan 70,45%. Kata kunci: Ultisol, Lumpur Laut, Pupuk Kandang, Bunga dan Fruit set


1995 ◽  
Vol 32 (2) ◽  
pp. 95-103
Author(s):  
José A. Revilla ◽  
Kalin N. Koev ◽  
Rafael Díaz ◽  
César Álvarez ◽  
Antonio Roldán

One factor in determining the transport capacity of coastal interceptors in Combined Sewer Systems (CSS) is the reduction of Dissolved Oxygen (DO) in coastal waters originating from the overflows. The study of the evolution of DO in coastal zones is complex. The high computational cost of using mathematical models discriminates against the required probabilistic analysis being undertaken. Alternative methods, based on such mathematical modelling, employed in a limited number of cases, are therefore needed. In this paper two alternative methods are presented for the study of oxygen deficit resulting from overflows of CSS. In the first, statistical analyses focus on the causes of the deficit (the volume discharged). The second concentrates on the effects (the concentrations of oxygen in the sea). Both methods have been applied in a study of the coastal interceptor at Pasajes Estuary (Guipúzcoa, Spain) with similar results.


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1295-1304 ◽  
Author(s):  
C. Jefferies

Visible pollution discharged from two combined sewer overflows were studied using passive Trash Trap devices and the UK Water Research Centre Gross Solids Sampler. Relationships are presented for the number of visible solids and the mass of gross solids discharged during an event. The differences in the behaviour of the overflow types are reported on and they are categorised using the Trash Traps.


Sign in / Sign up

Export Citation Format

Share Document