Eccentricity Effects on NVH Performance of Interior Permanent Magnets Machines for Hybrid and Electric Vehicles

2021 ◽  
Vol 263 (4) ◽  
pp. 2384-2392
Author(s):  
Peng Zhang ◽  
Song He ◽  
Michael C. Muir ◽  
G. S. J. Gautam

For the hybrid electric vehicles (HEVs) and electric vehicles (EVs) applications, the electric machine drive unit system provides the main noise source, especially in the presence of faults. Eccentricity is one of the most common faults, which is mainly caused by the motors' package design and assembling process. There are four main types of eccentricity for motors: static offset, dynamic offset, static tilt and dynamic tilt, which are presented and analyzed. Both two-dimensional (2D) and 3-dimentional (3D) finite element analysis (FEA) are utilized in the electromagnetic field analysis for an Interior Permanent Magnet (IPM) motor. The corresponding methodologies for the mesh and force mapping to the mechanical FEA for the NVH analysis are presented. The NVH test shows that both 2D and 3D FEA can provide reasonable accuracy for the motor eccentricity fault analysis. The 2D FEA is the most common method used in the design optimization and early performance prediction for electrical. For the 3D FEA, due to the high requirement for the computer hardware and computation capability, it is usually used in the final validation for electrical machines' performance. The sensitivity of motor performance versus the airgap heights and eccentricities are studied.

2020 ◽  
Vol 10 (17) ◽  
pp. 5881
Author(s):  
Selma Čorović ◽  
Damijan Miljavec

This paper investigates mechanical vibrations of an interior permanent magnet (IPM) synchronous electrical motor designed for a wide range of speeds by virtue of the modal and rotordynamic theory. Mechanical vibrations of the case study IPM motor components were detected and analyzed via numerical, analytical and experimental investigation. First, a finite element-based model of the stator assembly including windings was set up and validated with experimental and analytical results. Second, the influence of the presence of the motor housing on the natural frequencies of the stator and windings was investigated by virtue of numerical modal analysis. The experimental and numerical modal analyses were further carried out on the IPM rotor configuration. The results show that the natural frequencies of the IPM rotor increase due to the presence of the magnets. Finally, detailed numerical rotordynamic analysis was performed in order to investigate the most critical speeds of the IPM rotor with bearings. Based on the obtained results, the key parameters related to mechanical vibrations response phenomena, which are important when designing electrical motors with interior permanent magnets, are provided. The main findings reported here can be used for experimental and theoretical mechanical vibration analysis of other types of rotating electrical machines.


Machines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 27
Author(s):  
Chunzhen Li ◽  
Xinhua Guo ◽  
Jinyuan Fu ◽  
Weinong Fu ◽  
Yulong Liu ◽  
...  

In-wheel direct drive (IWDD) of electric vehicles (EVs), which simplifies the transmission system and facilitates flexible control of vehicle dynamics, has evolved considerably in the EV sector. This paper proposes a novel double-stator double-rotor motor (DSDRM) with a bidirectional flux modulation effect for in-wheel direct drive of EVs. With the proposed special design, a synthetic-slot structure with synthetic materials containing copper and permanent magnets (PMs) in the slots of the motor is ingeniously employed, and the outer and inner rotors are mechanically connected together as a single rotor, making its mechanical structure less complicated than those of two-rotor machines. The main work of this paper involves the design, analysis, construction, and testing of the proposed machine. The DSDRM with a synthetic-slot structure was demonstrated to be feasible by finite element analysis (FEA), prototype fabrication, and experimental results. In addition, vehicle layout with DSDRM is presented and verified by the vehicle road test experiment. Thus, the DSDRM with the synthetic-slot structure can be used as a hub motor for in-wheel direct drive of EVs.


Author(s):  
Ya Li ◽  
Xiping Liu ◽  
Zhangqi Liu

Purpose This paper aims to present an interior permanent magnet synchronous machine (IPMSM) with double-layer PMs used for electric vehicles, of which the integrated simulation of electromagnetic field, stress field and temperature field are analyzed. Design/methodology/approach Some electromagnetic characteristics including iron loss, efficiency and flux linkage are obtained by finite element analysis. The mechanical strength of rotor at the maximum speed and the temperature rise at the rated load are calculated by three-dimensional finite element analysis (FEA). Findings The results show that the presented IPMSM can work with sufficient mechanical strength, machine temperature rise and high efficiency during field-weakening operation. The experiments were carried out to verify the FEA, and acceptable results can be achieved. Originality/value This paper proposed a novel IPMSM with the double-layer permanent magnets, which is designed and checked by the multi-physics fields, and the high efficiency in all operational regions can be achieved for this machine.


2021 ◽  
Vol 11 (5) ◽  
pp. 2159
Author(s):  
Yong-min You ◽  
Keun-young Yoon

The irreversible demagnetization of permanent magnets causes the deterioration of the performance in permanent magnet synchronous motors (PMSMs), which are used for electric vehicles. NdFeB, which is the permanent magnet most commonly used in PMSMs for electric vehicles, is easily demagnetized at high temperatures. Because traction motors for electric vehicles reach high temperatures, and a high current can be instantaneously applied, permanent magnets of PMSM can be easily demagnetized. Therefore, it is important to study the demagnetization phenomenon of PMSMs for electric vehicles. However, since the demagnetization analysis procedure is complicated, previous studies have not been able to perform optimization considering demagnetization characteristics. In this study, we optimized the shape of a PMSM for electric vehicles by considering the demagnetization characteristics of permanent magnets using an automated design of experiments procedure. Using this procedure, a finite element analysis for each experimental point determined by a sampling method can be performed quickly and easily. The multi-objective function minimizes the demagnetization rate and maximizes the average torque, and the constraints are the efficiency and torque ripple. Various metamodels were generated for each of the multi-objective functions and constraints, and the metamodels with the best prediction performance were selected. By applying a multi-objective genetic algorithm, 1902 various optimal solutions were obtained. When the weight rate of the demagnetization rate to the torque was set to 0.1:0.9, the demagnetization rate and average torque were improved by 4.45% and 2.7%, respectively, compared to those of the initial model. The proposed multi-objective optimization method can guide the design of PMSMs for electric vehicles with high reliability and strong demagnetization characteristics.


2012 ◽  
Vol 06 ◽  
pp. 109-114
Author(s):  
BYUNG-CHUL WOO ◽  
DO-KWAN HONG ◽  
JI-YOUNG LEE

The most distinctive advantage of transverse flux motor(TFM) is high torque density which has prompted many researches into studying various design variants. TFM is well suited for low speed direct drive applications due to its high torque density. This paper deals with simulation based comparisons between a surface permanent magnet transverse flux motor(SPM-TFM) and an interior permanent magnet transverse flux motor(IPM-TFM). A commercial finite element analysis(FEA) software Maxwell 3D is used for electromagnetic field computation to fully analyze complex geometry of the TFMs. General characteristics, such as cogging torque, rated torque and torque ripple characteristics of the two TFMs are analyzed and compared by extensive 3D FEA.


Author(s):  
Zhipeng Wu ◽  
Shuguang Zuo ◽  
Shenglong Hu ◽  
Xiaorui Hu ◽  
Siyue Chen ◽  
...  

Interior permanent magnet synchronous motors (IPMSMs) have been widely used as drive machines in electric vehicles (EVs) due to their high torque density. However, the torque ripple of IPMSMs will result in severe noise and vibration. This paper proposes a new analytical method for electromagnetic torque prediction and harmonic reduction of IPMSM. On the basis of dq theory, an analytical model of electromagnetic torque is firstly established by taking the permanent magnet flux harmonics and the cross-coupling effect into consideration. And the specific sources and orders of torque harmonics are also determined. Then, the torque-angle characteristics are further studied. In particular, the permanent magnet (PM) torque and the reluctance torque are separated and quantitatively analyzed via the proposed analytical model. Finally, a theoretical method of reducing the specific order torque harmonic by PM shifting is derived and proposed from the perspective of avoiding resonance. The accuracy and effectiveness of the proposed analytical method are verified by finite-element analysis. The results show that the proposed analytical model is accurate enough to predict the electromagnetic torque performance of IPMSM. Moreover, the electromagnetic torque harmonics with specific orders can be effectively reduced by shifting the PM to an appropriate angle.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Takeo Ishikawa ◽  
Naoto Igarashi ◽  
Nobuyuki Kurita

Since a high degree of reliability is necessary for permanent magnet synchronous motors, the detection of a precursor for the demagnetization of permanent magnets is very important. This paper investigates the diagnosis of very slight PM demagnetization. The permanent magnet volume is altered so as to mimic the effect of demagnetization. This paper investigates the influence of demagnetization by using several methods: the 3D finite element analysis (FEA) of the motor, the measurement of high-frequency impedance, and the measurement and FEA of the stator voltage and current under vector control. We have obtained the following results. The back-EMF is proportional to permanent magnet volume, and there is no difference in the demagnetization in the radial direction and in the axial direction. Even harmonics and subharmonics of flux density at the teeth tip could be useful for diagnosis if a search coil is installed there. The relatively low frequency resistance at the d-axis position is useful for diagnosis. Under vector control, the stator voltage is useful except in an intermediate torque range, and the intermediate torque is expressed by a simple equation.


2021 ◽  
Vol 11 (5) ◽  
pp. 2150
Author(s):  
Claudio Rossi ◽  
Alessio Pilati ◽  
Marco Bertoldi

This paper deals with the digital implementation of a motor control algorithm based on a unified machine model, thus usable with every traditional electric machine type (induction, brushless with interior permanent magnets, surface permanent magnets or pure reluctance). Starting from the machine equations in matrix form in continuous time, the paper exposes their discrete time transformation, suitable for digital implementation. Since the solution of these equations requires integration, the virtual division of the calculation time in sub-intervals is proposed to make the calculations more accurate. Optimization of this solver enables faster runs and higher precision especially when high rotating speed requires fast calculation time. The proposed solver is presented at different implementation levels, and its speed and accuracy performance are compared with standard solvers.


Author(s):  
Yang Xiao ◽  
Z.Q. Zhu ◽  
Shensheng Wang ◽  
Geraint Jewell ◽  
Jin Tao Chen ◽  
...  

2013 ◽  
Vol 448-453 ◽  
pp. 2114-2119 ◽  
Author(s):  
Izzeldin Idris Abdalla ◽  
Taib Ibrahim ◽  
Nursyarizal Mohd Nor

This paper describes a design optimization to achieve optimal performance of a two novel single-phase short-stroke tubular linear permanent magnet motors (TLPMMs) with rectangular and trapezoidal permanent magnets (PMs) structures. The motors equipped with a quasi-Halbach magnetized moving-magnet armature and slotted stator with a single-slot carrying a single coil. The motors have been developed for reciprocating compressor applications such as household refrigerators. It is observed that the TLPMM efficiency can be optimized with respect to the leading design parameters (dimensional ratios). Furthermore, the influence of mover back iron is investigated and the loss of the motor is computed. Finite element analysis (FEA) is employed for the optimization, and the optimal values of the ratio of the axial length of the radially magnetized magnets to the pole pitch as well as the ratio of the PMs outer radius-to-stator outer radius (split ratio), are identified.


Sign in / Sign up

Export Citation Format

Share Document