scholarly journals Multi-Objective Optimization of Permanent Magnet Synchronous Motor for Electric Vehicle Considering Demagnetization

2021 ◽  
Vol 11 (5) ◽  
pp. 2159
Author(s):  
Yong-min You ◽  
Keun-young Yoon

The irreversible demagnetization of permanent magnets causes the deterioration of the performance in permanent magnet synchronous motors (PMSMs), which are used for electric vehicles. NdFeB, which is the permanent magnet most commonly used in PMSMs for electric vehicles, is easily demagnetized at high temperatures. Because traction motors for electric vehicles reach high temperatures, and a high current can be instantaneously applied, permanent magnets of PMSM can be easily demagnetized. Therefore, it is important to study the demagnetization phenomenon of PMSMs for electric vehicles. However, since the demagnetization analysis procedure is complicated, previous studies have not been able to perform optimization considering demagnetization characteristics. In this study, we optimized the shape of a PMSM for electric vehicles by considering the demagnetization characteristics of permanent magnets using an automated design of experiments procedure. Using this procedure, a finite element analysis for each experimental point determined by a sampling method can be performed quickly and easily. The multi-objective function minimizes the demagnetization rate and maximizes the average torque, and the constraints are the efficiency and torque ripple. Various metamodels were generated for each of the multi-objective functions and constraints, and the metamodels with the best prediction performance were selected. By applying a multi-objective genetic algorithm, 1902 various optimal solutions were obtained. When the weight rate of the demagnetization rate to the torque was set to 0.1:0.9, the demagnetization rate and average torque were improved by 4.45% and 2.7%, respectively, compared to those of the initial model. The proposed multi-objective optimization method can guide the design of PMSMs for electric vehicles with high reliability and strong demagnetization characteristics.

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3639
Author(s):  
Rundong Huang ◽  
Chunhua Liu ◽  
Zaixin Song ◽  
Hang Zhao

Electric machines with high torque density are needed in many applications, such as electric vehicles, electric robotics, electric ships, electric aircraft, etc. and they can avoid planetary gears thus reducing manufacturing costs. This paper presents a novel axial-radial flux permanent magnet (ARFPM) machine with high torque density. The proposed ARFPM machine integrates both axial-flux and radial-flux machine topologies in a compact space, which effectively improves the copper utilization of the machine. First, the radial rotor can balance the large axial forces on axial rotors and prevent them from deforming due to the forces. On the other hand, the machine adopts Halbach-array permanent magnets (PMs) on the rotors to suppress air-gap flux density harmonics. Also, the Halbach-array PMs can reduce the total attracted force on axial rotors. The operational principle of the ARFPM machine was investigated and analyzed. Then, 3D finite-element analysis (FEA) was conducted to show the merits of the ARFPM machine. Demonstration results with different parameters are compared to obtain an optimal structure. These indicated that the proposed ARFPM machine with Halbach-array PMs can achieve a more sinusoidal back electromotive force (EMF). In addition, a comparative analysis was conducted for the proposed ARFPM machine. The machine was compared with a conventional axial-flux permanent magnet (AFPM) machine and a radial-flux permanent magnet (RFPM) machine based on the same dimensions. This showed that the proposed ARFPM machine had the highest torque density and relatively small torque ripple.


Author(s):  
Liying Jin ◽  
Shengdun Zhao ◽  
Wei Du ◽  
Xuesong Yang ◽  
Wensheng Wang ◽  
...  

In order to optimize the local search efficiency of multi-objective parameters of flux switching permanent motor based on traditional NSGA-II algorithm, an improved NSGA-II (iNSGA-II) algorithm is proposed, with an anti-redundant mutation operator and forward comparison operation designed for quick identification of non-dominated individuals. In the initial stage of the iNSGA-II algorithm, half of the individual populations were randomly generated, while the other half was generated according to feature distribution information. Taking the flux switching permanent motor stator/rotor gap, permanent magnets width, stator tooth width, rotor tooth width and other parameters as optimization variables, the flux switching permanent motor maximum output shaft torque and minimum torque ripple are taken as optimization objectives, thus a multi-objective optimization model is established. Real number coding was adopted for obtaining the Pareto optimal solution of flux switching permanent motor structure parameters. The results showed that the iNSGA-II algorithm is better than the traditional NSGA-II on convergence. A 1.8L TOYOTA PRIUS model was selected as the prototype vehicle. By using the optimized parameters, a joint optimization simulation model was established by calling ADVISOR’s back-office function. The simulation results showed that the entire vehicle’s 100-km acceleration time is under 8 s and the battery’s SOC value maintains at 0.5–0.7 in the entire cycle, implying that the iNSGA-II algorithm optimizes the flux switching permanent motor design and is suitable for the initial design and optimizing calculation of the flux switching permanent motor.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2130 ◽  
Author(s):  
Yunyun Chen ◽  
Yu Ding ◽  
Jiahong Zhuang ◽  
Xiaoyong Zhu

The double-stator permanent-magnet doubly salient (DS-PMDS) machine is an interesting candidate motor for electric vehicle (EV) applications because of its high torque output and flexible working modes. Due to the complexity of the motor structure, optimization of the DS-PMDS for EVs requires more research efforts to meet multiple specifications. Effective multi-objective optimization to increase torque output, reduce torque ripple, and improve PM material utilization and motor efficiency is implemented in this paper. In the design process, a multi-objective comprehensive function is established. By using parametric sensitivity analysis (PSA) and the sequential quadratic programming (NLPQL) method, the influence extent of each size parameter for different performance is effectively evaluated and optimal results are determined. By adopting the finite element method (FEM), the electromagnetic performances of the optimal DS-PMDS motor is investigated. Moreover, a multi-physical field analysis is included to describe stress, deformation of the rotor, and temperature distribution of the proposed motor. The theoretical analysis verified the rationality of the motor investigated and the effectiveness of the proposed optimization method.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2240
Author(s):  
Sajjad Ahmadi ◽  
Thierry Lubin ◽  
Abolfazl Vahedi ◽  
Nasser Taghavi

This paper presents a multi-objective optimal rotor design for an interior permanent magnet synchronous motor (IPMSM) based on finite element analysis. Due to the importance of torque characteristic in electromagnetic design of IPMSMs, the main efforts of this study are focused on finding a proper trade-off for its torque profile challenges. In this regard, in order to attain high average torque and low torque ripple, the influence of several key factors, such as the permanent magnet (PM) arrangements, PM positions and PM sizes, are examined. Subsequently, according to the outcomes of the performed sensitivity analysis, the appropriate variation interval of the parameters as well as their initial values is determined. Employing such a deterministic optimization algorithm, which does not need large sample points, minimizes the finite element computational cost and leads to accelerate the convergence process. The two-dimensional finite element model (FEM) of an IPMSM is used to perform a sensitivity analysis and establish a multi-objective FEM-based optimization.


2021 ◽  
Vol 12 (3) ◽  
pp. 131
Author(s):  
Jiawei Chai ◽  
Tianyi Zhao ◽  
Xianguo Gui

Permanent magnet torque motor (PMTM) is widely used in aerospace, computer numerical control (CNC) machine tools, and industrial robots with many advantages such as high torque density, strong overload capacity, and low torque ripple. With the upgrading of industrial manufacturing, the requirements for the performance of torque motors have become more stringent. At present, how to achieve high output torque and low torque ripple has become a research hotspot of torque motors. In the optimization process, it is necessary to increase the output torque while the torque ripple can be reduced, and it is difficult to get a good result with the single-objective optimization. In this paper, a multi-objective optimization method based on the combination of design parameter stratification and support vector machine (SVM) is proposed. By analyzing the causes of torque ripple, the output torque, efficiency, cogging torque, and total harmonic distortion (THD) of back electromotive force (EMF) are selected as the optimization objectives. In order to solve the coupling problem between the motor parameters, the calculation formula of Pearson correlation coefficient is used to analyze the relationship between the design parameters and the optimization objectives, and the design parameters are layered ac-cording to the sensitivity. In order to shorten the optimization cycle of the motor, SVM is used as a fitting method of the mathematical model. The performance between initial and optimal motors is compared, and it can be found that the optimized motor has a higher torque and lower torque ripple. The simulation results verify the effectiveness of the proposed optimization method.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2406 ◽  
Author(s):  
Cezary Jędryczka ◽  
Dawid Danielczyk ◽  
Wojciech Szeląg

This paper deals with the torque ripple minimization method based on the modulation of the phase currents of the permanent-magnet synchronous motor (PMSM) drive. The shape of the supply current waveforms reducing the torque ripple of the machine considered was determined on the basis of finite element analysis (FEA). In the proposed approach, the machine is supplied by a six-leg inverter in order to allow for the injection of zero sequence current harmonics. Two test PMSMs with fractional-slot concentrated windings (FSCW) and surface-mounted permanent magnets (SPMs) have been examined as a case study problem. Wide-range fractional analyses were performed using developed numerical models of the electromagnetic field distribution in the considered machines. The results obtained show that the level of torque ripple in FSCW PMSMs can be effectively reduced by the modulation of the phase currents under the six-leg inverter supply.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1127-1134
Author(s):  
Ghulam Jawad Sirewal ◽  
Muhammad Ayub ◽  
Byung-il Kwon

This paper proposes a permanent magnet assisted brushless wound rotor synchronous machine (PMa–BL–WRSM) design. The proposed machine has the advantage of a high starting torque compared to existing BL–WRSM topologies. Additionally, the average torque increases and the torque ripple is reduced when the permanent magnet assisted machine structure is used. PMa–BL–WRSM operates on the principle of brushless excitation using zero-sequence, third-harmonic current generation in the stator windings. The third harmonic component is harnessed to induce a voltage in the harmonic winding which is mounted on the rotor. As there is no flux generated from filed winding in the starting, the starting torque of the machine is also zero. To overcome the problem, permanent magnets (PMs) are inserted in each field tooth to provide the initial source of flux on the rotor. Finite element analysis is performed with the PM–BL–WRSM, and the elicited results are compared with the basic machine structure. The proposed machine operation is verified using 2-D finite element analyses using the ANSYS Maxwell analysis tool.


Author(s):  
Zhipeng Wu ◽  
Shuguang Zuo ◽  
Shenglong Hu ◽  
Xiaorui Hu ◽  
Siyue Chen ◽  
...  

Interior permanent magnet synchronous motors (IPMSMs) have been widely used as drive machines in electric vehicles (EVs) due to their high torque density. However, the torque ripple of IPMSMs will result in severe noise and vibration. This paper proposes a new analytical method for electromagnetic torque prediction and harmonic reduction of IPMSM. On the basis of dq theory, an analytical model of electromagnetic torque is firstly established by taking the permanent magnet flux harmonics and the cross-coupling effect into consideration. And the specific sources and orders of torque harmonics are also determined. Then, the torque-angle characteristics are further studied. In particular, the permanent magnet (PM) torque and the reluctance torque are separated and quantitatively analyzed via the proposed analytical model. Finally, a theoretical method of reducing the specific order torque harmonic by PM shifting is derived and proposed from the perspective of avoiding resonance. The accuracy and effectiveness of the proposed analytical method are verified by finite-element analysis. The results show that the proposed analytical model is accurate enough to predict the electromagnetic torque performance of IPMSM. Moreover, the electromagnetic torque harmonics with specific orders can be effectively reduced by shifting the PM to an appropriate angle.


2016 ◽  
Vol 65 (2) ◽  
pp. 285-294 ◽  
Author(s):  
Goga Cvetkovski ◽  
Lidija Petkovska

Abstract The analysed permanent magnet disc motor (PMDM) is used for direct wheel drive in an electric vehicle. Therefore there are several objectives that could be tackled in the design procedure, such as an increased efficiency, reduced iron weight, reduced copper weight or reduced weight of the permanent magnets (reduced rotor weight). In this paper the optimal design of PMDM using a multi-objective genetic algorithm optimisation procedure is performed. A comparative analysis of the optimal motor solution and its parameters in relation to the prototype is presented.


Sign in / Sign up

Export Citation Format

Share Document