scholarly journals Sequence-Defined Nanotubes Assembled from IR780-Conjugated Peptoids for Chemophototherapy of Malignant Glioma

Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiaoli Cai ◽  
Mingming Wang ◽  
Peng Mu ◽  
Tengyue Jian ◽  
Dong Liu ◽  
...  

Near-infrared (NIR) laser-induced phototherapy through NIR agents has demonstrated the great potential for cancer therapy. However, insufficient tumor killing due to the nonuniform heat or cytotoxic singlet oxygen (1O2) distribution over tumors from phototherapy results in tumor recurrence and inferior outcomes. To achieve high tumor killing efficacy, one of the solutions is to employ the combinational treatment of phototherapy with other modalities, especially with chemotherapeutic agents. In this paper, a simple and effective multimodal therapeutic system was designed via combining chemotherapy, photothermal therapy (PTT), and photodynamic therapy (PDT) to achieve the polytherapy of malignant glioma which is one of the most aggressive tumors in the brain. IR-780 (IR780) dye-labeled tube-forming peptoids (PepIR) were synthesized and self-assembled into crystalline nanotubes (PepIR nanotubes). These PepIR nanotubes showed an excellent efficacy for PDT/PTT because the IR780 photosensitizers were effectively packed and separated from each other within crystalline nanotubes by tuning IR780 density; thus, a self-quenching of these IR780 molecules was significantly reduced. Moreover, the efficient DOX loading achieved due to the nanotube large surface area contributed to an efficient and synergistic chemotherapy against glioma cells. Given the unique properties of peptoids and peptoid nanotubes, we believe that the developed multimodal DOX-loaded PepIR nanotubes in this work offer great promises for future glioma therapy in clinic.

Author(s):  
Emily S. Day ◽  
Linna Zhang ◽  
Nastassja A. Lewinski ◽  
Patrick A. Thompson ◽  
Rebekah A. Drezek ◽  
...  

Glioblastoma multiforme is the most common and aggressive primary brain tumor, with median survival of approximately 10 months and only 5% of patients surviving greater than 5 years after treatment (1). Surgery and radiotherapy are the main treatment modalities for primary brain tumors, but the associated risks are high when infiltrative tumors are positioned near sensitive regions in the brain. Nanoshells, nanoparticles characterized by a spherical silica core and a gold shell, may provide the opportunity to treat brain tumors in a minimally invasive manner, reducing the risk associated with treatment. Upon exposure to a near-infrared laser, nanoshells convert light energy into heat that can thermally ablate cancerous cells (2). Targeted photothermal ablation of human glioma and medulloblastoma cells has already been demonstrated with this technique in vitro (3).


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ashley R. Hoover ◽  
Kaili Liu ◽  
Trisha I. Valerio ◽  
Min Li ◽  
Priyabrata Mukherjee ◽  
...  

Abstract Immunotherapy has provided a new avenue to treat metastatic cancers, which result in ∼90% of cancer related deaths. However, current immunotherapies, such as immune checkpoint therapy (ICT), have met with limited success, primarily due to tumor intrinsic and extrinsic factors that inhibit antitumor immune responses. To overcome the immune suppression of the tumor microenvironment (TME) and enhance the tumoricidal activity of ICT, phototherapy, particularly photothermal therapy (PTT), combined with nanomedicine has become a viable option. PTT disrupts target tumor homeostasis, releasing tumor associated antigens (TAAs), tumor specific antigens (TSAs), danger associated molecular patterns (DAMPs), and scarce nutrients required to “feed” activated antitumor immune cells. While nanoparticles localize and specify the phototherapeutic effect, they can also be loaded with immune stimulants, TME modulators, and/or chemotherapeutic agents to greatly enhance immune stimulation and tumor killing. Combining these three technologies, which we term nano-ablative immunotherapy (NAIT), with ICT can greatly enhance their therapeutic effects. In this review, we will discuss the successes and limitations of NAIT + ICT. Specifically, we will discuss how the TME limits tumoricidal activity and what should be considered to overcome these limitations.


Nanoscale ◽  
2021 ◽  
Author(s):  
Jinsong Xiong ◽  
Qinghuan Bian ◽  
Shuijin Lei ◽  
Yatian Deng ◽  
Kehan Zhao ◽  
...  

Near-infrared (NIR) light induced photothermal cancer therapy using nanomaterials as photothermal agents has attracted considerable research interest over the past few years. As the key factor in the photothermal therapy...


2021 ◽  
Vol 22 (3) ◽  
pp. 1122
Author(s):  
Mario Forcione ◽  
Mario Ganau ◽  
Lara Prisco ◽  
Antonio Maria Chiarelli ◽  
Andrea Bellelli ◽  
...  

The brain tissue partial oxygen pressure (PbtO2) and near-infrared spectroscopy (NIRS) neuromonitoring are frequently compared in the management of acute moderate and severe traumatic brain injury patients; however, the relationship between their respective output parameters flows from the complex pathogenesis of tissue respiration after brain trauma. NIRS neuromonitoring overcomes certain limitations related to the heterogeneity of the pathology across the brain that cannot be adequately addressed by local-sample invasive neuromonitoring (e.g., PbtO2 neuromonitoring, microdialysis), and it allows clinicians to assess parameters that cannot otherwise be scanned. The anatomical co-registration of an NIRS signal with axial imaging (e.g., computerized tomography scan) enhances the optical signal, which can be changed by the anatomy of the lesions and the significance of the radiological assessment. These arguments led us to conclude that rather than aiming to substitute PbtO2 with tissue saturation, multiple types of NIRS should be included via multimodal systemic- and neuro-monitoring, whose values then are incorporated into biosignatures linked to patient status and prognosis. Discussion on the abnormalities in tissue respiration due to brain trauma and how they affect the PbtO2 and NIRS neuromonitoring is given.


2021 ◽  
Author(s):  
Haiyan Wu ◽  
Pengpeng Jia ◽  
Yu Zou ◽  
Jiang Jiang

Photothermal therapy, assisted by local heat generation using photothermal nanoparticles (NPs), is an emerging strategy to treat tumors noninvasively. To improve treatment outcome and to alleviate potential side effect on...


2021 ◽  
Vol 4 (2) ◽  
pp. 2019-2029
Author(s):  
Li-Peng Zhang ◽  
Lin Kang ◽  
Xianqiang Li ◽  
Shiyang Liu ◽  
Tianlong Liu ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Yufei Wang ◽  
Hongmin Meng ◽  
Zhaohui Li

The development of robust materials for treating diseases through non-invasive photothermal therapy (PTT) has attracted increasing attention in recent years. Among many types of nanomaterials, inorganic nanomaterials with strong absorption...


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Manoj Kumar Mahata ◽  
Ranjit De ◽  
Kang Taek Lee

Due to the unique properties of lanthanide-doped upconverting nanoparticles (UCNP) under near-infrared (NIR) light, the last decade has shown a sharp progress in their biomedicine applications. Advances in the techniques for polymer, dye, and bio-molecule conjugation on the surface of the nanoparticles has further expanded their dynamic opportunities for optogenetics, oncotherapy and bioimaging. In this account, considering the primary benefits such as the absence of photobleaching, photoblinking, and autofluorescence of UCNPs not only facilitate the construction of accurate, sensitive and multifunctional nanoprobes, but also improve therapeutic and diagnostic results. We introduce, with the basic knowledge of upconversion, unique properties of UCNPs and the mechanisms involved in photon upconversion and discuss how UCNPs can be implemented in biological practices. In this focused review, we categorize the applications of UCNP-based various strategies into the following domains: neuromodulation, immunotherapy, drug delivery, photodynamic and photothermal therapy, bioimaging and biosensing. Herein, we also discuss the current emerging bioapplications with cutting edge nano-/biointerfacing of UCNPs. Finally, this review provides concluding remarks on future opportunities and challenges on clinical translation of UCNPs-based nanotechnology research.


Sign in / Sign up

Export Citation Format

Share Document