Photothermal Therapy of Glioma in a Mouse Model With Near-Infrared Excited Nanoshells

Author(s):  
Emily S. Day ◽  
Linna Zhang ◽  
Nastassja A. Lewinski ◽  
Patrick A. Thompson ◽  
Rebekah A. Drezek ◽  
...  

Glioblastoma multiforme is the most common and aggressive primary brain tumor, with median survival of approximately 10 months and only 5% of patients surviving greater than 5 years after treatment (1). Surgery and radiotherapy are the main treatment modalities for primary brain tumors, but the associated risks are high when infiltrative tumors are positioned near sensitive regions in the brain. Nanoshells, nanoparticles characterized by a spherical silica core and a gold shell, may provide the opportunity to treat brain tumors in a minimally invasive manner, reducing the risk associated with treatment. Upon exposure to a near-infrared laser, nanoshells convert light energy into heat that can thermally ablate cancerous cells (2). Targeted photothermal ablation of human glioma and medulloblastoma cells has already been demonstrated with this technique in vitro (3).

Biomimetics ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 3 ◽  
Author(s):  
Damian Maziukiewicz ◽  
Bartosz Grześkowiak ◽  
Emerson Coy ◽  
Stefan Jurga ◽  
Radosław Mrówczyński

The growing incidence of cancer is a problem for modern medicine, since the therapeutic efficacy of applied modalities is still not satisfactory in terms of patients’ survival rates, especially in the case of patients with brain tumors. The destructive influence of chemotherapy and radiotherapy on healthy cells reduces the chances of full recovery. With the development of nanotechnology, new ideas on cancer therapy, including brain tumors, have emerged. Photothermal therapy (PTT) is one of these. It utilizes nanoparticles (NPs) that can convert the light, preferably in the near-infrared (NIR) region, into heat. In this paper, we report the use of nanodiamonds (NDs) conjugated with biomimetic polydopamine (PDA) and indocyanine green (ICG) for glioblastoma cancer PTT therapy. The obtained materials were thoroughly analyzed in terms of their PTT effectiveness, as well as their physicochemical properties. The performed research demonstrated that NDs@PDA@ICG can be successfully applied in the photothermal therapy of glioblastoma for PTT and exhibited high photothermal conversion efficiency η above 40%, which is almost 10 times higher than in case of bare NDs. In regard to our results, our material was found to lead to a better therapeutic outcome and higher eradication of glioblastoma cells, as demonstrated in vitro.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2104 ◽  
Author(s):  
Eleonora Ficiarà ◽  
Shoeb Anwar Ansari ◽  
Monica Argenziano ◽  
Luigi Cangemi ◽  
Chiara Monge ◽  
...  

Magnetic Oxygen-Loaded Nanobubbles (MOLNBs), manufactured by adding Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on the surface of polymeric nanobubbles, are investigated as theranostic carriers for delivering oxygen and chemotherapy to brain tumors. Physicochemical and cyto-toxicological properties and in vitro internalization by human brain microvascular endothelial cells as well as the motion of MOLNBs in a static magnetic field were investigated. MOLNBs are safe oxygen-loaded vectors able to overcome the brain membranes and drivable through the Central Nervous System (CNS) to deliver their cargoes to specific sites of interest. In addition, MOLNBs are monitorable either via Magnetic Resonance Imaging (MRI) or Ultrasound (US) sonography. MOLNBs can find application in targeting brain tumors since they can enhance conventional radiotherapy and deliver chemotherapy being driven by ad hoc tailored magnetic fields under MRI and/or US monitoring.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoxia Song ◽  
Zhi Chen ◽  
Xue Zhang ◽  
Junfeng Xiong ◽  
Teng Jiang ◽  
...  

AbstractMagnetic micro/nanorobots attracted much attention in biomedical fields because of their precise movement, manipulation, and targeting abilities. However, there is a lack of research on intelligent micro/nanorobots with stimuli-responsive drug delivery mechanisms for cancer therapy. To address this issue, we developed a type of strong covalently bound tri-bead drug delivery microrobots with NIR photothermal response azobenzene molecules attached to their carboxylic surface groups. The tri-bead microrobots are magnetic and showed good cytocompatibility even when their concentration is up to 200 µg/mL. In vitro photothermal experiments demonstrated fast NIR-responsive photothermal property; the microrobots were heated to 50 °C in 4 min, which triggered a significant increase in drug release. Motion control of the microrobots inside a microchannel demonstrated the feasibility of targeted therapy on tumor cells. Finally, experiments with lung cancer cells demonstrated the effectiveness of targeted chemo-photothermal therapy and were validated by cell viability assays. These results indicated that tri-bead microrobots have excellent potential for targeted chemo-photothermal therapy for lung cancer cell treatment.


2019 ◽  
Vol 10 ◽  
pp. 811-822 ◽  
Author(s):  
Tzuriel Levin ◽  
Hagit Sade ◽  
Rina Ben-Shabbat Binyamini ◽  
Maayan Pour ◽  
Iftach Nachman ◽  
...  

Nanostructures of transition-metal dichalcogenides (TMDC) have raised scientific interest in the last few decades. Tungsten disulfide (WS2) nanotubes and nanoparticles are among the most extensively studied members in this group, and are used for, e.g., polymer reinforcement, lubrication and electronic devices. Their biocompatibility and low toxicity make them suitable for medical and biological applications. One potential application is photothermal therapy (PTT), a method for the targeted treatment of cancer, in which a light-responsive material is irradiated with a laser in the near-infrared range. In the current article we present WS2 nanotubes functionalized with previously reported ceric ammonium nitrate–maghemite (CAN-mag) nanoparticles, used for PTT. Functionalization of the nanotubes with CAN-mag nanoparticles resulted in a magnetic nanocomposite. When tested in vitro with two types of cancer cells, the functionalized nanotubes showed a better PTT activity compared to non-functionalized nanotubes, as well as reduced aggregation and the ability to add a second-step functionality. This ability is demonstrated here with two polymers grafted onto the nanocomposite surface, and other functionalities could be additional cancer therapy agents for achieving increased therapeutic activity.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Kandala Laxman ◽  
B. Pradeep K. Reddy ◽  
Sumit K. Mishra ◽  
Andrea Robinson ◽  
Abhijit De ◽  
...  

AbstractPhotothermal therapy (PTT) has attracted great interest in cancer treatment, and the quest for potential organic photothermal agents is underway owing to the nonbiodegradable nature and chronic toxicity of existing inorganic nanomaterials. Organic material-based nanoformulations with good photothermal and fluorescence properties in the near-infrared (NIR-I) window are scarce. However, porphyrins are one category of biocompatible systems that are advantageous for photothermal therapy but are currently based in the visible region, causing limited depth of tissue penetration and leading to compromised photothermal and near-infrared fluorescence (NIRF) imaging applications. To overcome these limitations, we report the synthesis of L,L-diphenylalanine conjugated BF2-oxasmaragdyrin (FF-BSC) and the fabrication of monodispersed spherical self-assemblies (FF-BSC NPs) using a USP class 3 solvent-water mixture. The resulting product exhibited excellent photostability (NIR exposure), multicycle photothermal efficacy, and NIR fluorescence. In vitro studies revealed good biocompatibility, efficient cellular internalization, and photothermal efficacy. Preclinical studies of these nano-self-assemblies demonstrated nontoxicity, efficient whole-body NIRF imaging, fractional passive tumor homing, and excellent photothermal tumor ablation potential. The absorbance and fluorescence of FF-BSC NPs in NIR-I make them suitable for theragnostic applications over existing porphyrins/inorganic nanomaterials for future clinical applications.


2013 ◽  
Vol 25 (7) ◽  
pp. 945-945 ◽  
Author(s):  
Kai Yang ◽  
Huan Xu ◽  
Liang Cheng ◽  
Chunyang Sun ◽  
Jun Wang ◽  
...  

1992 ◽  
Vol 76 (3) ◽  
pp. 513-519 ◽  
Author(s):  
Stephen C. Saris ◽  
Paul Spiess ◽  
Daniel M. Lieberman ◽  
Shan Lin ◽  
Stuart Walbridge ◽  
...  

✓ Methods have recently been described for the isolation and expansion of lymphocytes that have trafficked into animal and human tumors. These CD8-positive tumor-infiltrating lymphocytes (TIL's) have exceptional trafficking ability to, and efficacy against, tumor targets in extracranial sites. Prior to Phase I clinical trials for patients with gliomas, adoptive immunotherapy with TIL's was studied in a mouse model of primary brain tumors to determine if intracerebral tumors have a similar response. Glioma 261 (GL261) tumors were grown in the subcutaneous space of C57BL/6 mice. After enzymatic digestion, the cells were incubated in vitro with interleukin-2 (IL-2) until a confluent population of T lymphocytes was present. The in vitro efficacy of these TIL's was tested against fresh GL261 targets with a chromium release assay; the in vivo efficacy was tested against GL261 tumors in the liver and against irradiated and nonirradiated GL261 tumors in the brain. Mice received one of the following: intraperitoneal saline; intraperitoneal IL-2 (7500 to 50,000 U three times daily for 5 days); IL-2 plus intravenous TIL's (1 to 3 × 107 cells); 10 Gy cranial irradiation; irradiation plus IL-2; or irradiation plus IL-2 plus TIL's. The TIL preparation killed 77% of tumor targets in 4 hours at an effector:target ratio of 100:1. In animals with GL261 tumors in the liver, at 2 weeks there were 93 ± 37, 128 ± 45, and 21 ± 14 liver metastases in the control, IL-2, and IL-2 plus TIL groups, respectively. However, in animals with GL261 tumors in the brain, no treatment group had an increased survival rate compared to the control group. It is concluded that, although TIL and IL-2 immunotherapy can be used effectively to treat brain tumors in vitro and at sites outside the central nervous system, it is ineffective against the same type of tumor in the brain. Different methods of delivery or different combinations of these immunomodulators may be more effective; however, based on these findings, treatment of patients with IL-2 and TIL cannot be recommended until efficacy has been demonstrated in an animal model.


Author(s):  
Jun Yao ◽  
Chuanda Zhu ◽  
Tianjiao Peng ◽  
Qiang Ma ◽  
Shegan Gao

Recently, organic–inorganic hybrid materials have gained much attention as effective photothermal agents for cancer treatment. In this study, Pluronic F127 hydrogel-coated titanium carbide (Ti3C2) nanoparticles were utilized as an injectable photothermal agent. The advantages of these nanoparticles are their green synthesis and excellent photothermal efficiency. In this system, lasers were mainly used to irradiate Ti3C2 nanoparticles to produce a constant high temperature, which damaged cancer cells. The nanoparticles were found to be stable during storage at low temperatures for at least 2 weeks. The Ti3C2 nanoparticles exhibited a shuttle-shaped structure, and the hydrogels presented a loosely meshed structure. In addition, Ti3C2 nanoparticles did not affect the reversible temperature sensitivity of the gel, and the hydrogel did not affect the photothermal properties of Ti3C2 nanoparticles. The in vitro and in vivo results show that this hydrogel system can effectively inhibit tumor growth upon exposure to near-infrared irradiation with excellent biocompatibility and biosafety. The photothermal agent-embedded hydrogel is a promising photothermal therapeutic strategy for cancer treatment by enhancing the retention in vivo and elevating the local temperature in tumors.


2014 ◽  
Vol 36 (2) ◽  
pp. E1 ◽  
Author(s):  
Pramod V. Butte ◽  
Adam Mamelak ◽  
Julia Parrish-Novak ◽  
Doniel Drazin ◽  
Faris Shweikeh ◽  
...  

Object The intraoperative clear delineation between brain tumor and normal tissue in real time is required to ensure near-complete resection without damaging the nearby eloquent brain. Tumor Paint BLZ-100, a tumor ligand chlorotoxin (CTX) conjugated to indocyanine green (ICG), has shown potential to be a targeted contrast agent. There are many infrared imaging systems in use, but they are not optimized to the low concentration and amount of ICG. The authors present a novel proof-of-concept near-infrared (NIR) imaging system using a standard charge-coupled device (CCD) camera for visualizing low levels of ICG attached to the tumors. This system is small, inexpensive, and sensitive. The imaging system uses a narrow-band laser at 785 nm and a notch filter in front of the sensor at the band. The camera is a 2-CCD camera, which uses identical CCDs for both visible and NIR light. Methods The NIR system is tested with serial dilution of BLZ-100 from 1 μM to 50 pM in 5% Intralipid solution while the excitation energy is varied from 5 to 40 mW/cm2. The analog gain of the CCD was changed from 0, 6, and 12 dB to determine the signal-to-noise ratio. In addition to the Intralipid solution, BLZ-100 was injected 48 hours before euthanizing the mice that were implanted with the human glioma cell line. The brain was removed and imaged using the NIR imaging system. Results The authors' results show that the NIR imaging system using a standard CCD is able to visualize the ICG down to 50 nM of concentration with a high signal-to-noise ratio. The preliminary experiment on human glioma implanted in mouse brains demonstrated that BLZ-100 has a high affinity for glioma compared with normal brain tissue. Additionally, the results show that NIR excitation is able to penetrate deeply and has a potential to visualize metastatic lesions that are separate from the main tumor. Conclusions The authors have seen that BLZ-100 has a very high affinity toward human gliomas. They also describe a small, cost-effective, and sensitive NIR system for visualizing brain tumors tagged using BLZ-100. The authors hope that the use of BLZ-100 along with NIR imaging will be useful to delineate the brain tumors in real time and assist surgeons in near-complete tumor removal to increase survival and reduce neurological deficits.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Shu-Jyuan Yang ◽  
Hsiao-Ting Huang ◽  
Chung-Huan Huang ◽  
Jui-An Pai ◽  
Chung-Hao Wang ◽  
...  

Aim: 7-Ethyl-10-hydroxycamptothecin (SN-38)-loaded gold nanoshells nanoparticles (HSP@Au NPs) were developed for combined chemo-photothermal therapy to treat colorectal cancer. Materials & methods: SN-38-loaded nanoparticles (HSP NPs) were prepared by the lyophilization-hydration method, and then developed into gold nanoshells. The nanoparticles were characterized and assessed for photothermal properties, cytotoxicity and hemocompatibility in vitro. In vivo anticancer activity was tested in a tumor mouse model. Results: The HSP@Au NPs (diameter 186.9 nm, zeta potential 33.4 mV) led to significant cytotoxicity in cancer cells exposed to a near-infrared laser. Moreover, the HSP@Au NP-mediated chemo-photothermal therapy displayed significant tumor growth suppression and disappearance (25% of tumor clearance rate) without adverse side effects in vivo. Conclusion: HSP@Au NPs may be promising in the treatment of colorectal cancer in the future.


Sign in / Sign up

Export Citation Format

Share Document