scholarly journals Description and control of solar cell protection material for quality assurance of a photovoltaic panel

2021 ◽  
pp. 1-23
Author(s):  
Araceli SALAZAR-PERALTA ◽  
◽  
José Alfredo PICHARDO-SALAZAR ◽  
Ulises PICHARDO-SALAZAR ◽  
Orlando SORIANO-VARGAS

Global warming and climate change coincide in their main causes, the massive emission of greenhouse gases, which retain heat in the atmosphere and on the earth's surface through the so-called greenhouse effect. The generation of electricity by means of fossil fuels is an important emitter of greenhouse gases (CO2, CH4, N2O), and halogenated compounds containing F, Cl, and Br. With the purpose of contributing to the construction of viable solutions to the current energy situation of the country and in the foundation of a sustainable future, the use of solar energy for the generation of electricity by means of solar panels represents an option. The purpose of this study is to describe and control the solar cell protection material Ethylene-Vinyl-Acetate (EVA), as a contribution to the Quality Assurance of solar panels, since the function of this material is essential for the protection of solar cells, which are a vital part of the solar panel. The tests performed were: Gel content, adhesion test, and durability tests. The results obtained were within specification according to IEC 61215. From this work it is concluded that it is important to continue testing the whole process and components of the solar panels in order to guarantee the useful life of the finished product, as well as to contribute to sustainable development.

2021 ◽  
Author(s):  
Aida LEDESMA-ALBERT ◽  

Global warming and climate change coincide in their main causes, the massive emission of greenhouse gases, which retain heat in the atmosphere and on the earth's surface through the so-called greenhouse effect. The generation of electricity by means of fossil fuels is an important emitter of greenhouse gases (CO2, CH4, N2O), and halogenated compounds containing F, Cl, and Br. With the purpose of contributing to the construction of viable solutions to the current energy situation of the country and in the foundation of a sustainable future, the use of solar energy for the generation of electricity by means of solar panels represents an option. The purpose of this study is to describe and control the solar cell protection material Ethylene-Vinyl-Acetate (EVA), as a contribution to the Quality Assurance of solar panels, since the function of this material is essential for the protection of solar cells, which are a vital part of the solar panel. The tests performed were: Gel content, adhesion test, and durability tests. The results obtained were within specification according to IEC 61215. From this work it is concluded that it is important to continue testing the whole process and components of the solar panels in order to guarantee the useful life of the finished product, as well as to contribute to sustainable development.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Zaid Almusaied ◽  
Bahram Asiabanpour ◽  
Semih Aslan

Renewable energy is the path for a sustainable future. The development in this field is progressing rapidly and solar energy is at the heart of this development. The performance and efficiency limitations are the main obstacles preventing solar energy from fulfilling its potential. This research intends to improve the performance of solar panels by identifying and optimizing the affecting factors. For this purpose, a mechanical system was developed to hold and control the tilt and orientation of the photovoltaic panel. A data acquisition system and electrical system were built to measure and store performance data of the photovoltaic panels. A design of experiments and Response Surface Methodology were used to investigate the impact of these factors on the yield response as well as the output optimization. The findings of the experiment showed an optimum result with a tilt of 60° from the horizon, an azimuth angel of 45° from the south, and a clean panel condition. The wind factor showed insignificant impact within the specified range.


Author(s):  
Anil Dhawan ◽  
S Faheem Naqvi

Global resources are limited and mindless use of them will finally lead to a scarcity. The need of the hour is to find the alternative energy resources which are abundant in nature and which deviate us from using fossils fuels. Solar Energy has gained a significant popularity in the past few decades as it is clean, meaning it does not release greenhouse gases and other harmful pollutants. It is also an abundant source of energy as it is available till the existence of the planet. Unlike fossil fuels, which are finite and cannot be replenished for thousands of years. Another drawback of fossil fuels is that they emit greenhouse gases and contribute to global climate change. Solar energy is an important technology for many reasons and has become a popular topic as many scientists around the world are working to increase the photo-electron conversion efficiency with minimum production cost. Diversified approaches have been undertaken to enhance the efficiency of solar cell. This paper will review the current state of art on photovoltaic cells (PVCs) in context to the materials used for fabrication, their possible cost and their working efficiency. This paper will also undertake the challenges that came across during the whole process and their possible solutions.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Romdhane Ben Slama

The global warming which preoccupies humanity, is still considered to be linked to a single cause which is the emission of greenhouse gases, CO2 in particular. In this article, we try to show that, on the one hand, the greenhouse effect (the radiative imprisonment to use the scientific term) took place in conjunction with the infrared radiation emitted by the earth. The surplus of CO2 due to the combustion of fossil fuels, but also the surplus of infrared emissions from artificialized soils contribute together or each separately,  to the imbalance of the natural greenhouse effect and the trend of global warming. In addition, another actor acting directly and instantaneously on the warming of the ambient air is the heat released by fossil fuels estimated at 17415.1010 kWh / year inducing a rise in temperature of 0.122 ° C, or 12.2 ° C / century.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zuiyuan Guo ◽  
Dan Xiao

AbstractWe established a stochastic individual-based model and simulated the whole process of occurrence, development, and control of the coronavirus disease epidemic and the infectors and patients leaving Hubei Province before the traffic was closed in China. Additionally, the basic reproduction number (R0) and number of infectors and patients who left Hubei were estimated using the coordinate descent algorithm. The median R0 at the initial stage of the epidemic was 4.97 (95% confidence interval [CI] 4.82–5.17). Before the traffic lockdown was implemented in Hubei, 2000 (95% CI 1982–2030) infectors and patients had left Hubei and traveled throughout the country. The model estimated that if the government had taken prevention and control measures 1 day later, the cumulative number of laboratory-confirmed patients in the whole country would have increased by 32.1%. If the lockdown of Hubei was imposed 1 day in advance, the cumulative number of laboratory-confirmed patients in other provinces would have decreased by 7.7%. The stochastic model could fit the officially issued data well and simulate the evolution process of the epidemic. The intervention measurements nationwide have effectively curbed the human-to-human transmission of severe acute respiratory syndrome coronavirus 2.


Author(s):  
Shuzhuang Sun ◽  
Hongman Sun ◽  
Paul T Williams ◽  
Chunfei Wu

CO2 is one of the most important greenhouse gases leading to severe environmental issues. The increase of CO2 emissions from the consumption of fossil fuels has received much research attention....


Author(s):  
Naglaa Kamel Bahgaat ◽  
Nariman Abdel Salam ◽  
Monika Mady Roshdy ◽  
Sandy Abd Elrasheed Sakr

Rapid growth in mobile networks and the increase of the number of cellular base stations requires more energy sources, but the traditional sources of energy cause pollution and environmental problems. Therefore, modern facilities tend to use renewable energy sources instead of traditional sources. One renewable source is the photovoltaic panel, which made from semiconductor materials which absorb sunlight to generate electricity. This article discusses the importance of using solar panels to produce energy for mobile stations and also a solution to some environmental problems such as pollution. This article provides a design for a solar-power plant to feed the mobile station. Also, in this article is a prediction of all loads, the power consumed, the number of solar panels used, and solar batteries can be used to store electrical energy. Finally, an estimation of the costs of all components will be presented. Good discussion and conclusion will be presented about the results obtained. The results obtained are promising. In addition, a future plan is described to complete this important study.


2013 ◽  
Vol 834-836 ◽  
pp. 2045-2048
Author(s):  
Xiao Ning Qu

The Environmental performance auditing is one professional audit that auditing the environmental performance of engineering project. We construct a multi-level auditing network in the whole process of project. That network can be divided into government audit, social audit and internal audit. And with which we predict, evaluate and control the impact on environmental effectively.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
R. Mazón-Hernández ◽  
J. R. García-Cascales ◽  
F. Vera-García ◽  
A. S. Káiser ◽  
B. Zamora

The main priority in photovoltaic (PV) panels is the production of electricity. The transformation of solar energy into electricity depends on the operating temperature in such a way that the performance increases with the decreasing temperatures. In the existing literature, different cooling techniques can be found. The purpose of most of them is to use air or water as thermal energy carriers. This work is focused on the use of air as a working fluid whose movement is either induced by natural convection or forced by means of a fan. The aim of this study is to characterise the electrical behaviour of the solar panels in order to improve the design of photovoltaic installations placed in roof applications ensuring low operating temperatures which will correct and reverse the effects produced on efficiency by high temperature. To do this, a test installation has been constructed at the Universidad Politécnica de Cartagena in Spain. In this paper, the results of the tests carried out on two identical solar panels are included. One of them has been modified and mounted on different channels through which air flows. The different studies conducted show the effects of the air channel cross-section, the air velocity, and the panel temperature on the electrical parameters of the solar panels, such as the voltage, current, power, and performance. The results conclude that the air space between the photovoltaic panels and a steel roof must be high enough to allow the panel to be cooled and consequently to achieve higher efficiency.


Sign in / Sign up

Export Citation Format

Share Document