scholarly journals Investigation of Apelin Level and Oxidative Damage in Children Diagnosed with Epilepsy for the First Time

Author(s):  
Vedat AKSU ◽  
Tuba ÖZGÖÇER ◽  
Hakim ÇELİK ◽  
Mustafa ÇALIK
Keyword(s):  
Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 271
Author(s):  
Qingjun Kong ◽  
Qingzhi Zeng ◽  
Jia Yu ◽  
Hongxi Xiao ◽  
Jun Lu ◽  
...  

Resveratrol dimers have been extensively reported on due to their antioxidative activity. Previous studies revealed that resveratrol dimer has been shown to selectively quench singlet oxygen (1O2), and could protect DNA from oxidative damage. The mechanism of resveratrol dimers protecting DNA against oxidative damage is still not clear. Therefore, in this project, the reactants and products of resveratrol dimers protecting guanine from oxidative damage were qualitatively monitored and quantitatively analyzed by UHPLC-QTOF-MS2 and UHPLC-QQQ-MS2. Results showed that when guanine and resveratrol dimers were attacked by 1O2, mostly resveratrol dimers were oxidized, which protected guanine from oxidation. Resveratrol dimers’ oxidation products were identified and quantified at m/z 467.1134 [M-H]− and 467.1118 [M-H]−, respectively. The resorcinol of resveratrol dimers reacted with singlet oxygen to produce p-benzoquinone, protecting guanine from 1O2 damage. Therefore, it is hereby reported for the first time that the resorcinol ring is the characteristic structure in stilbenes inhibiting 1O2 induced-DNA damage, which provides a theoretical basis for preventing and treating DNA damage-mediated diseases.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Javier Díaz-Castro ◽  
Jesus Florido ◽  
Naroa Kajarabille ◽  
Sonia Prados ◽  
Catalina de Paco ◽  
...  

The objective of the current study was to investigate for the first time and simultaneously the oxidative stress and inflammatory signaling induced during the delivery in healthy mothers and their neonates. 56 mothers with normal gestational course and spontaneous delivery were selected. Blood samples were taken from mother (before and after delivery) both from vein and artery of umbilical cord. Lower antioxidant enzymes activities were observed in neonates compared with their mothers and lower oxidative stress in umbilical cord artery with respect to vein. There was an overexpression of inflammatory cytokines in the mother, such as IL-6 and TNF-α, and, in addition, PGE2was also increased. Neonates showed lower levels of IL-6 and TNF-αand higher values of sTNF-RII and PGE2in comparison with their mothers. Parturition increases oxidative damage in the mother, although the indicators of oxidative damage were lower in umbilical cord artery with respect to umbilical vein. The overexpression of inflammatory cytokines reveals that fetus suffers its own inflammatory process during parturition.


Separations ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 177
Author(s):  
Luís Rodrigues da Silva ◽  
Renan Campos Chisté ◽  
Eduarda Fernandes

The Calluna vulgaris honey produced in Portugal, concerning its phenolic compounds and abscisic acids profiles, as well as its antioxidant activity and the protective effect against oxidative damage in human erythrocytes were herein performed for the first time. The phenolic and abscisic acid profiles were tentatively identified by LC-MS/MS (17 compounds). The total content of phenolics and abscisic acids was 15,446.4 µg/g of honey extract, with catechin derivatives and abscisic acids being major constituents. The highest scavenging capacity was found against reactive nitrogen species. Additionally, the honey extract prevented ROO•-induced oxidative damage in erythrocytes collected from human blood, by inhibiting hemolysis, lipid peroxidation and hemoglobin oxidation. In conclusion, C. vulgaris honey contains high content of catechin derivatives and abscisic acids that may be responsible for its biological activity, characterized by a strong antioxidant capacity, which adds up to the nutritional value of this delicacy.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Mallikarjuna Korivi ◽  
Chien-Wen Hou ◽  
Chih-Yang Huang ◽  
Shin-Da Lee ◽  
Ming-Fen Hsu ◽  
...  

Despite regular exercise benefits, acute exhaustive exercise elicits oxidative damage in liver. The present study determined the hepatoprotective properties of ginsenoside-Rg1 against exhaustive exercise-induced oxidative stress in rats. Forty rats were assigned into vehicle and ginsenoside-Rg1 groups (0.1 mg/kg bodyweight). After 10-week treatment, ten rats from each group performed exhaustive swimming. Estimated oxidative damage markers, including thiobarbituric acid reactive substance (TBARS) (67%) and protein carbonyls (56%), were significantly (P<0.01) elevated after exhaustive exercise but alleviated in ginsenoside-Rg1 pretreated rats. Furthermore, exhaustive exercise drastically decreased glutathione (GSH) content (∼79%) with concurrent decreased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities. However, these changes were attenuated in Rg1 group. Additionally, increased xanthine oxidase (XO) activity and nitric oxide (NO) levels after exercise were also inhibited by Rg1 pretreatment. For the first time, our findings provide strong evidence that ginsenoside-Rg1 can protect the liver against exhaustive exercise-induced oxidative damage.


2016 ◽  
Vol 283 (1829) ◽  
pp. 20153025 ◽  
Author(s):  
Oren Levy ◽  
Sarit Karako-Lampert ◽  
Hiba Waldman Ben-Asher ◽  
Didier Zoccola ◽  
Gilles Pagès ◽  
...  

Corals acquire nutrients via the transfer of photosynthates by their endosymbionts (autotrophy), or via zooplankton predation by the animal (heterotrophy). During stress events, corals lose their endosymbionts, and undergo starvation, unless they increase their heterotrophic capacities. Molecular mechanisms by which heterotrophy sustains metabolism in stressed corals remain elusive. Here for the first time, to the best of our knowledge, we identified specific genes expressed in heterotrophically fed and unfed colonies of the scleractinian coral Stylophora pistillata , maintained under normal and light-stress conditions. Physiological parameters and gene expression profiling demonstrated that fed corals better resisted stress than unfed ones by exhibiting less oxidative damage and protein degradation. Processes affected in light-stressed unfed corals (HLU), were related to energy and metabolite supply, carbohydrate biosynthesis, ion and nutrient transport, oxidative stress, Ca 2+ homeostasis, metabolism and calcification (carbonic anhydrases, calcium-transporting ATPase, bone morphogenetic proteins). Two genes ( cp2u1 and cp1a2 ), which belong to the cytochrome P450 superfamily, were also upregulated 249 and 10 times, respectively, in HLU corals. In contrast, few of these processes were affected in light-stressed fed corals (HLF) because feeding supplied antioxidants and energetic molecules, which help repair oxidative damage. Altogether, these results show that heterotrophy helps prevent the cascade of metabolic problems downstream of oxidative stress.


2005 ◽  
Vol 187 (7) ◽  
pp. 2244-2248 ◽  
Author(s):  
Caroline Cuny ◽  
Laure Dukan ◽  
Laetitia Fraysse ◽  
Manuel Ballesteros ◽  
Sam Dukan

ABSTRACT In previous experiments we were able to separate, using a nondestructive separation technique, culturable and nonculturable bacteria, from a Luria-Bertani (LB) medium culture of Escherichia coli incubated for 48 h. We observed in the nonculturable bacterial population an increase in oxidative damage and up-induction of most defenses against reactive oxygen species (ROS), along with a decrease in cytoplasmic superoxide dismutases. In this study, using the same separation technique, we separated into two subpopulations a 10-h LB medium culture containing only culturable bacteria. For the first time, we succeeded in associating physical separation with physiological differences. Although the levels of defense against ROS (RpoS, RpoH, OxyR, and SoxRS regulons) and oxidative damage (carbonyl contents) were apparently the same, we found that bacteria in one subpopulation were more sensitive to LB medium starvation and to various stresses, such as phosphate buffer starvation, heat shock, and hydrogen peroxide exposure. Based on these results, we suggest that these physiological differences reflect uncharacterized bacterial modifications which do not directly involve defenses against ROS.


2020 ◽  
Vol 2020 ◽  
pp. 1-22
Author(s):  
Yutong Wang ◽  
Tianyao Yang ◽  
Yanshou Han ◽  
Zhaozhou Ren ◽  
Jiayun Zou ◽  
...  

Arsenic trioxide (As2O3) is a promising effective chemotherapeutic agent for cancer treatment; however, how and through what molecular mechanisms the oxidative damage of As2O3 is controlled remains poorly understood. Recently, the involvement of dysregulated long noncoding RNA ovarian tumor domain containing 6B antisense RNA1 (lncRNA OTUD6B-AS1) in tumorigenesis is established. Here, for the first time, we characterize the regulation of As2O3 in the oxidative damage against bladder cancer via lncRNA OTUD6B-AS1. As2O3 could activate lncRNA OTUD6B-AS1 transcription in bladder cancer cells, and these findings were validated in a xenograft tumor model. Functional assays showed that lncRNA OTUD6B-AS1 dramatically exacerbated As2O3-mediated oxidative damage by inducing oxidative stress. Mechanistically, As2O3 increased levels of metal-regulatory transcription factor 1 (MTF1), which regulates lncRNA OTUD6B-AS1, in response to oxidative stress. Further, lncRNA OTUD6B-AS1 inhibited mitochondrial NADP+-dependent isocitrate dehydrogenase 2 (IDH2) expression by stabilizing miR-6734-5p, which contributed to cytotoxicity by enhancing oxidative stress. Together, our findings offer new insights into the mechanism of As2O3-induced oxidative damage and identify important factors in the pathway, As2O3/lncRNA OTUD6B-AS1/miR-6734-5p/IDH2, expanding the knowledge of activity of As2O3 as cancer treatment.


Author(s):  
O. T. Minick ◽  
E. Orfei ◽  
F. Volini ◽  
G. Kent

Hemolytic anemias were produced in rats by administering phenylhydrazine or anti-erythrocytic (rooster) serum, the latter having agglutinin and hemolysin titers exceeding 1:1000.Following administration of phenylhydrazine, the erythrocytes undergo oxidative damage and are removed from the circulation by the cells of the reticulo-endothelial system, predominantly by the spleen. With increasing dosage or if animals are splenectomized, the Kupffer cells become an important site of sequestration and are greatly hypertrophied. Whole red cells are the most common type engulfed; they are broken down in digestive vacuoles, as shown by the presence of acid phosphatase activity (Fig. 1). Heinz body material and membranes persist longer than native hemoglobin. With larger doses of phenylhydrazine, erythrocytes undergo intravascular fragmentation, and the particles phagocytized are now mainly red cell fragments of varying sizes (Fig. 2).


Author(s):  
J. Chakraborty ◽  
A. P. Sinha Hikim ◽  
J. S. Jhunjhunwala

Although the presence of annulate lamellae was noted in many cell types, including the rat spermatogenic cells, this structure was never reported in the Sertoli cells of any rodent species. The present report is based on a part of our project on the effect of torsion of the spermatic cord to the contralateral testis. This paper describes for the first time, the fine structural details of the annulate lamellae in the Sertoli cells of damaged testis from guinea pigs.One side of the spermatic cord of each of six Hartly strain adult guinea pigs was surgically twisted (540°) under pentobarbital anesthesia (1). Four months after induction of torsion, animals were sacrificed, testes were excised and processed for the light and electron microscopic investigations. In the damaged testis, the majority of seminiferous tubule contained a layer of Sertoli cells with occasional spermatogonia (Fig. 1). Nuclei of these Sertoli cells were highly pleomorphic and contained small chromatinic clumps adjacent to the inner aspect of the nuclear envelope (Fig. 2).


Author(s):  
M. Rühle ◽  
J. Mayer ◽  
J.C.H. Spence ◽  
J. Bihr ◽  
W. Probst ◽  
...  

A new Zeiss TEM with an imaging Omega filter is a fully digitized, side-entry, 120 kV TEM/STEM instrument for materials science. The machine possesses an Omega magnetic imaging energy filter (see Fig. 1) placed between the third and fourth projector lens. Lanio designed the filter and a prototype was built at the Fritz-Haber-Institut in Berlin, Germany. The imaging magnetic filter allows energy-filtered images or diffraction patterns to be recorded without scanning using efficient area detection. The energy dispersion at the exit slit (Fig. 1) results in ∼ 1.5 μm/eV which allows imaging with energy windows of ≤ 10 eV. The smallest probe size of the microscope is 1.6 nm and the Koehler illumination system is used for the first time in a TEM. Serial recording of EELS spectra with a resolution < 1 eV is possible. The digital control allows X,Y,Z coordinates and tilt settings to be stored and later recalled.


Sign in / Sign up

Export Citation Format

Share Document