scholarly journals BAPV SYSTEM MODELING FOR THE SINGLE-FAMILY HOUSE: A CASE STUDY

Author(s):  
Ewelina Krawczak

The community all over the World has to tackle the problem of depletion of fossil fuels, overusing the natural resources, and growing emission of greenhouse gases into the atmosphere. It is related to the growing demand for electricity due to global development in every field. The solution to this problem can be production clean, solar energy with the use of photovoltaic modules. However, the installation of PV system in urban areas is very often impossible because of high-density citie’s architecture. The objective of this study was to analyze building applied photovoltaic system configurations for the flat rooftop of the detached house in Warsaw, Poland. Four configurations were analyzed taking into consideration the area of the rooftop, different tilt angles of PV modules, and shading areas. The system configuration as well as monthly energy output were carried out by the use of DDS-Cad software. The ecological aspect of the photovoltaic installation was also analyzed. A significant reduction of greenhouse gases was observed based on conducted calculations.

2018 ◽  
Vol 155 ◽  
pp. 01033 ◽  
Author(s):  
V.T. Dinh ◽  
Yuhao Yan

This article presents a short-term forecast of electric energy output of a photovoltaic (PV) system towards Tomsk city, Russia climate variations (module temperature and solar irradiance). The system is located at Institute of Non-destructive Testing, Tomsk Polytechnic University. The obtained results show good agreement between actual data and prediction values.


1979 ◽  
Vol 101 (2) ◽  
pp. 213-216
Author(s):  
J. L. Obermeier ◽  
H. W. Townes

Presented is an economic evaluation of several commercial wind-powered electric generation systems of the type which could be used by an individual homeowner. A system includes a wind plant, tower, storage battery, and dc to ac inverter. The analysis considered a total of 12 different system configurations. The evaluation of energy output was based on wind speed data for several locations in the state of Montana. The analysis can be extended to other locations on the basis of mean annual wind speed. The results of the evaluation indicate that some of the “home built” systems are competitive economically at the present time in some “windy” locations. None of the systems which are economic could individually supply the entire power requirement for a single-family dwelling.


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 149 ◽  
Author(s):  
Henrik Zsiborács ◽  
Nóra Hegedűsné Baranyai ◽  
Szilvia Csányi ◽  
András Vincze ◽  
Gábor Pintér

The energy demand of mankind is constantly growing, thus the utilization of various renewable energy sources, which also reduces negative environmental effects, is becoming more and more important. Because of the achievement of climate protection targets, photovoltaic (PV) energy has an increasing role in the global energy mix. This paper presents the technical and economic aspects of different photovoltaic system configurations designed to suit the Hungarian renewable energy regulations. In this study, five alternative PV configurations were examined for systems with a capacity from 50 kW to 500 kW, related to low- and medium-voltage installations. This article also introduces and explains the Hungarian economic PV and Feed-in-Tariff (FiT) regulations, where three different investment alternatives are analyzed with the help of economic indicators. This study could help stakeholders in the market (e.g., the Hungarian industry sector and local governments) understand the possible directions of technical and economic PV development. According to the results, the payback periods in all the studied economic-technical cases were below 10 years. The experimental results show that each investment option may be a good decision from an economic and technical point of view under the Hungarian regulations in force in 2019.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1878 ◽  
Author(s):  
João Torres ◽  
Carlos Fernandes ◽  
João Gomes ◽  
Bonfiglio Luc ◽  
Giovinazzo Carine ◽  
...  

Solar concentrator photovoltaic collectors are able to deliver energy at higher temperatures for the same irradiances, since they are related to smaller areas for which heat losses occur. However, to ensure the system reliability, adequate collector geometry and appropriate choice of the materials used in these systems will be crucial. The present work focuses on the re-design of the Concentrating Photovoltaic system (C-PV) collector reflector presently manufactured by the company Solarus, together with an analysis based on the annual assessment of the solar irradiance in the collector. An open-source ray tracing code (Soltrace) is used to accomplish the modelling of optical systems in concentrating solar power applications. Symmetric parabolic reflector configurations are seen to improve the PV system performance when compared to the conventional structures currently used by Solarus. The parabolic geometries, using either symmetrically or asymmetrically placed receivers inside the collector, accomplished both the performance and cost-effectiveness goals: for almost the same area or costs, the new proposals for the PV system may be in some cases 70% more effective as far as energy output is concerned.


2014 ◽  
Vol 1043 ◽  
pp. 12-16
Author(s):  
Afroza Nahar ◽  
M. Hasanuzzaman ◽  
N.A. Rahim ◽  
Md. Hosenuzzaman

Interest of renewable energies is increasing due to the revising the energy policies for fighting against the emission of Carbon-dioxide. To make the development of the civilization sustainable and cause less harm to the environment, clean energy resources are very important. Many alternative renewable energy resources are available that can be used instead of fossil fuels. Solar energy is one of the potential alternative renewable energies. This paper presents differents types of Photovoltaic cell materials which is one of the most effective parameter for improvement of photovoltaic cell as well as Photovoltaic system performance.


2018 ◽  
Vol 49 ◽  
pp. 00014
Author(s):  
Bartosz Chwieduk ◽  
Adam Szelągowski

The paper presents results of analysis of possible cooperation of a photovoltaic system with the space cooling devices. The size of the photovoltaic system was determined on the basis of electricity demand of the selected single family house. The demand for the electricity use for cooling and air conditioning had not been taken into account while calculating the size of PV system. On the basis of the heat balance of the building, the demand for cooling in the following hours of a year was determined. The demand for cooling and heating is affected by the heat transfer through walls, windows, floor, roof, and air exchanged through ventilation. Also solar and internal gains were taken into account. Based on Next, a cooling unit was selected. A cooling device was selected to provide enough energy to maintain the thermal comfort of the building in summer. Taking into account parameters of the selected device, the demand for electricity was determined. Based on time and hours of operation of electrical appliances in the building, a chart of electricity demand was created. The demand for cooling was included. Calculated values of the energy demand required to power all devices in the building were compared with the energy gains from the photovoltaic system. In order to calculate the energy generated by the PV system (in following hours of a year) the isotropic model of solar irradiation was used. The input solar radiation data on horizontal surface were downloaded from the website of the Ministry of Investment and Economic Development. In the last paragraphs, savings obtained in result of using the energy generated by the PV system to drive the space cooling system were determined and conclusions from the calculations were presented.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 586
Author(s):  
Fadhil Y. Al-Aboosi ◽  
Abdullah F. Al-Aboosi

Solar photovoltaic (PV) systems have demonstrated growing competitiveness as a viable alternative to fossil fuel-based power plants to mitigate the negative impact of fossil energy sources on the environment. Notwithstanding, solar PV technology has not made yet a meaningful contribution in most countries globally. This study aims to encourage the adoption of solar PV systems on rooftop buildings in countries which have a good solar energy potential, and even if they are oil or gas producers, based on the obtained results of a proposed PV system. The performance of a rooftop grid-tied 3360 kWp PV system was analyzed by considering technical, economic, and environmental criteria, solar irradiance intensity, two modes of single-axis tracking, shadow effect, PV cell temperature impact on system efficiency, and Texas A&M University as a case study. The evaluated parameters of the proposed system include energy output, array yield, final yield, array and system losses, capacity factor, performance ratio, return on investment, payback period, Levelized cost of energy, and carbon emission. According to the overall performance results of the proposed PV system, it is found to be a technically, economically, and environmentally feasible solution for electricity generation and would play a significant role in the future energy mix of Texas.


2020 ◽  
Vol 17 (1) ◽  
pp. 1
Author(s):  
Nurmalessa Muhammad ◽  
Nor Zaini Ikrom Zakaria ◽  
Sulaiman Shaari ◽  
Ahmad Maliki Omar

The failure detection in a grid-connected photovoltaic (PV) system has become an important aspect of solving the issue of the reduced energy output in the PV system. One of the methods in detecting failure is by using the threshold-based method to compute the ratio of actual and predicted DC array current and DC string voltage value. This value will be applied in the failure detection algorithm by using power loss analysis and may reduce the time, cost and labour needed to measure the quality of the energy output of the PV system. This study presented the threshold value of DC array current and DC string voltage to be implemented in the algorithm of fault detection in grid-connected photovoltaic (PV) system under the Malaysian climate. Data from the PV system located at Green Energy Research Center (GERC) was recorded in 12 months interval using the monocrystalline PV modules. The actual data was recorded using five minutes interval for 30 consecutive days. The prediction of the data was calculated using the mathematical method. The threshold value was determined from the ratio between actual and predicted data. The results show that the DC array current threshold value, σ is 0.9816. While, DC string voltage threshold value, λ is 0.9261. The proposed value may be beneficial for the determination of threshold value for regions with the tropical climate.


Author(s):  
Wojciech RZEŹNIK ◽  
Ilona RZEŹNIK ◽  
Paulina MIELCAREK

Farm buildings have a large number of unused roofs, where photovoltaic panels may be installed without limiting the agricultural land. In piggeries the largest demand for electricity has the ventilation system. The daily distribution of electricity demand is correlated to the diurnal variation of solar radiation. This allows immediate use the energy produced by photovoltaic panels. The aim of the study was to determine the energy demand of the ventilation system, to design a photovoltaic system for its operation and to determine the CO2 emission reduction. The research was carried out for the deep-litter piggery located in Poland. The demand for electricity was determined on the basis of three-year measurements of electricity consumption in the studied piggery. The photovoltaic system was designed to power the ventilation system. Mean annual demand was 26046 kWh. The designed PV system has power of 27 kWp (23984 kWh yr-1). Energy deficits (4591 kWh·yr-1) were noted for 8 months, and energy surpluses (2528 kWh·yr-1) for 4 months in a year. The reduction of CO2 emissions resulting from the use of a photovoltaic system to supply the ventilation system is 19.1 Mg CO2·yr-1 and represents 3% of the total greenhouse gases emissions from the piggery, expressed in CO2 equivalent. It may increase to 8.6% in case of installing the maximum number of PV panels system (maximum power of 78 kWp; total energy production 68526 kWh yr-1) on the southern part of the roof, but it requires the financial support for renewable energy by the government.


Author(s):  
L. Bouhaki ◽  
R. Saadani ◽  
R. Agounoun ◽  
K. Sbai ◽  
M. Rahmoune

Photovoltaic (PV) systems are the most promising renewable energy source in Morocco due to its abundant solar irradiation. The Moroccan government has launched various renewable energy programs to encourage the use of PV systems. In this work we present a comparative study in terms of energy produced and the efficiency of a grid connected photovoltaic (PV) system installed on the roof of the building occupied by the “Ecole Supérieure de Technologie de Meknes” (ESTM). The on-grid connected photovoltaic system has a total power of 5860 Watts (Wp). This system provides an average daily reduction of 30 kWh in the consumption of electrical energy at ESTM facilities; this will allow us to save fossil fuels and reduce emissions of greenhouse gas. The average annual production of electric power is estimated at 10.5 MWh, equivalent to burning 0.9 tons of oil, which will prevent the emission of about 2 tons / year of CO2 in the atmosphere. Three different commercial solar modules, manufactured with different materials and technologies in monocrystalline silicon, polycrystalline silicon and amorphous silicon were tested.


Sign in / Sign up

Export Citation Format

Share Document