Characterization of epitaxial CVD graphene on Ir(111)/α-Al2O3(0001) by photoelectron momentum microscopy

Author(s):  
Eri Hashimoto ◽  
Keigo Tamura ◽  
Hayato Yamaguchi ◽  
Takeshi Watanabe ◽  
Fumihiko Matsui ◽  
...  

Abstract We characterized CVD-grown graphene with high single-crystallinity on Ir(111)/α-Al2O3(0001) by photoelectron momentum microscopy. A multi-functional photoelectron momentum microscope (PMM), which is installed with element-specific valence band photoelectron spectroscopy and X-ray absorption spectroscopy, is a complementary characterization tool to conventional methods, such as Raman spectroscopy and atomic force microscopy, for comprehensive and quantitative characterization of graphene/Ir(111). Using PMM, we characterized the properties of CVD-grown graphene including the single-crystallinity, number of layers, crystal orientation, and degree of interaction between graphene and Ir(111) and clarified the relationship between these properties and the CVD growth conditions.

2011 ◽  
Vol 480-481 ◽  
pp. 1065-1069
Author(s):  
Bin Liu ◽  
Lin Wang ◽  
Yin Zhong Bu ◽  
Sheng Rong Yang ◽  
Jin Qing Wang

Titanium (Ti) and its alloys have been applied in orthopedics as one of the most popular biomedical metallic implant materials. In this work, to enhance the bioactivity, the surface of Ti alloy pre-modified by silane coupling agent and glutaraldehyde was covalently grafted with chitosan (CS) via biochemical multistep self-assembled method. Then, for the first time, the achieved surface was further immobilized with casein phosphopeptides (CPP), which are one group of bioactive peptides released from caseins in the digestive tract and can facilitate the calcium adsorption and usage, to form CS-CPP biocomposite coatings. The structure and composition of the fabricated coatings were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and atomic force microscopy (AFM). As the experimental results indicated, multi-step assembly was successfully performed, and the CS and CPP were assembled onto the Ti alloy surface orderly. It is anticipated that the Ti alloys modified by CS-CPP biocomposite coatings will find potential applications as implant materials in biomedical fields.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2075
Author(s):  
Diego Gomez-Maldonado ◽  
Iris Beatriz Vega Erramuspe ◽  
Ilari Filpponen ◽  
Leena-Sisko Johansson ◽  
Salvatore Lombardo ◽  
...  

With increasing global water temperatures and nutrient runoff in recent decades, the blooming season of algae lasts longer, resulting in toxin concentrations that exceed safe limits for human consumption and for recreational use. From the different toxins, microcystin-LR has been reported as the main cyanotoxin related to liver cancer, and consequently its abundance in water is constantly monitored. In this work, we report a methodology for decorating cellulose nanofibrils with β-cyclodextrin or with poly(β-cyclodextrin) which were tested for the recovery of microcystin from synthetic water. The adsorption was followed by Quartz Crystal Microbalance with Dissipation monitoring (QCM-D), allowing for real-time monitoring of the adsorption behavior. A maximum recovery of 196 mg/g was obtained with the modified by cyclodextrin. Characterization of the modified substrate was confirmed with Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric Analysis (TGA), and Atomic Force Microscopy (AFM).


2015 ◽  
Vol 752-753 ◽  
pp. 1379-1383
Author(s):  
M.I. Maksud ◽  
Mohd Sallehuddin Yusof ◽  
Zaidi Embong

The purpose of this paper is to study a ink surface morphology, quantify the chemical composition involved in processing of graphite ink printed by flexographic printing. The methodology is to use surface sensitive technique, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM). As a finding we successfully achieved 25 micron lines array using PDMS printing plate. The Originality and value of this work is surface sensitive techniques like XPS, AFM and FESEM were exclusively used in order to characterize graphite inks printed by flexographic method, using PDMS printing plate.


2006 ◽  
Vol 2006 ◽  
pp. 1-6 ◽  
Author(s):  
Florian Voigts ◽  
Tanja Damjanovic ◽  
Günter Borchardt ◽  
Christos Argirusis ◽  
Wolfgang Maus-Friedrichs

We present a simple and highly reproductive method for the preparation of thin films consisting of strontium titanate nanoparticles. The films are produced by spin coating of a sol on silicon targets and subsequent annealing under ambient conditions. Analysis by atomic force microscopy shows particles with typical sizes between 10 nm and 50 nm. X-ray photoelectron spectroscopy displays a stoichiometry of the films as anticipated from preliminary experiments with strontium titanate single crystals. Metastable-induced electron spectroscopy and ultraviolet photoelectron spectroscopy are used as tools to give evidence to the similar electronic properties of nanoparticle film and single crystal. These results support the prospect for an application of the nanoparticle films as high temperature oxygen sensor with superior properties.


2001 ◽  
Vol 08 (01n02) ◽  
pp. 43-50 ◽  
Author(s):  
M. KONO ◽  
X. SUN ◽  
R. LI ◽  
K. C. WONG ◽  
K. A. R. MITCHELL ◽  
...  

X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning electron microscopy (SEM) have been used to characterize surfaces of aluminum which have been pretreated by mechanical polishing, acid etching and alkaline etching, as well as given subsequent exposures to air and water. These surfaces can differ markedly with regard to their chemical compositions and topographical structures. Characterizations of these surfaces after exposures to three organosilanes, γ-GPS, BTSE and γ-APS, indicate that the amount of silane adsorbed in each case shows a tendency to increase both with the number of OH groups detected at the oxidized aluminum and with the surface roughness. The XPS data are consistent with the adhesion of γ-APS occurring through H bonding, especially via NH3+ groups.


2005 ◽  
Vol 277-279 ◽  
pp. 972-976
Author(s):  
Jang Hee Yoon ◽  
Yoon Bo Shim ◽  
Chae Ryong Cho ◽  
Mi Sook Won

In this study, ZnO and CuO doped zinc oxide thin films were cathodically deposited in aqueous zinc chloride solutions in the presence of oxygen on a Pt/Ti/SiO2/Si substrate through an electrochemical reaction. A mercurous sulfate electrode was used as a reference electrode and the counter electrode was a Pt spiral wire. Deposition was carried out in solutions containing Zn2+ ions introduced as ZnCl2 salt at concentrations ranging from 5.0 x 10-4 to 5.0 x 10-2 M. The bath temperatures were controlled from 65°C to 80°C. The oxygen gas was introduced from argon/oxygen mixtures allowing its partial pressure to be fixed along with its concentration in the solution. Doping of CuO was carried out in cupric nitrate or a cupric chloride/0.1M KCl solution. The influence of the Cu/Zn concentration, deposition temperature of a solution, applied cathodic potential and deposition time were optimized. After the potential was applied, the cathodic current reached a steady state within 5 min. The composition, and the characterization of the surface of the films were investigated through X-ray diffractometry, X-ray photoelectron spectroscopy, atomic force microscopy and scanning electron microscopy.


Author(s):  
Cyril J. F. Kahn ◽  
Dominique Dumas ◽  
Elmira Arab-Tehrany ◽  
Vanessa Marie ◽  
Nguyen Tran ◽  
...  

Tendons and ligaments are complex multi-scale collageneous structures playing a fundamental role in mouvement. Even if these tissues are extensively studied in the past decades, modeling their non-linear viscoelastic properties is still a tough challenge. In order to reveal the relationship between the multi-scale structures and the macroscopic mechanical properties, we used atomic force microscopy (AFM) and second harmonic generation (SHG) microscopy to study unstreateched microtome slices of rabbit Achilles tendons, and an Adamel Lomargy DY.22 tensile test machine to study the dynamic properties of these tissues. Based on our data, a Zener model was used to describe the dynamic loading and unloading cycles.


Cosmetics ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 31 ◽  
Author(s):  
Shinichi Tokunaga ◽  
Hiroto Tanamachi ◽  
Kazutaka Ishikawa

In this paper, surface degradation of hair is reviewed. Surface properties such as hydrophobicity and surface friction change as surface structures of hair fiber, that is, 18-methyleicosanoic acid (18-MEA) and epicuticle, degrade. Comparison of contact angle and amount of 18-MEA from root to tip of the sampled hair fibers clarified the contribution of not only 18-MEA but also epicuticle to surface properties. It was found that chemical treatment by itself, such as bleaching, is not enough to cause complete loss of hydrophobic nature even after 18-MEA is removed. Additional weathering processes, such as repeatedly shampooing, are required. A technology for the deposition of a persistent hydrophobicity to bleached and weathered hair surfaces using 18-MEA is presented. Combination of 18-MEA with specific cationic surfactants (Stearoxypropyldimethylamine: SPDA) made the bleached and weathered hair surface hydrophobic, and its hydrophobicity was maintained even after shampooing. Characterization of adsorbed layers of 18-MEA/SPDA on a mica surface, as a possible hydrophilic surface model, was performed using atomic force microscopy (AFM) and angle-resolved X-ray photoelectron spectroscopy (AR-XPS). The effects of the anteiso-branch moiety of 18-MEA to create a persistent hydrophobicity with 18-MEA/SPDA were investigated using controlled AFM. It was revealed that the anteiso-branch moiety of 18-MEA in the 18-MEA/SPDA system produces a persistent hydrophobicity by providing higher fluidity to the upper region of the 18-MEA/SPDA layer. The contribution to hair beauty and sensory feeling as one of the practical functions of the hair surface is described in this paper. The hydrophobic nature of the hair surface reduces surface friction in a wet state, which reduces hair disorder alignment. It is also revealed that the moisturized or dried out feeling strongly depends on the hair shape (meandering and diameter) which depends on hair surface properties in a wet environment.


1995 ◽  
Vol 401 ◽  
Author(s):  
Y. Gao ◽  
S. A. Chambers

AbstractEpitaxial films of NbxTi1−xO2 rutile were grown on TiO2 (110) and (100) at 600 °C by oxygen-plasma-assisted molecular beam epitaxy using elemental Ti and Nb sources. The epitaxial films were characterized by means of reflection high-energy and low-energy electron diffraction (RHEED/LEED), x-ray photoelectron spectroscopy and diffraction (XPS/XPD), ultraviolet photoemission spectroscopy (UPS) and atomic force microscopy (AFM). The epitaxial films grow in a layer-by-layer fashion and have excellent short- and long-range structure order at x≤0.3 on TiO2(110) and at x≤0.15 on TiO2(100). However, the epitaxial films become rough and disorder at higher doping levels. Nb substitutionally incorporates at cation lattice sites, leading to NbxTi1−xO2 solid solutions. In addition, the oxidation state of Nb in the NbxTi1−xO2 films has been determined to be +4.


Sign in / Sign up

Export Citation Format

Share Document