scholarly journals Self-compacting Concrete with Alccofine and Glass Fiber

Self consolidating concrete (S.C.C.) is a type of concrete which need not be provided any kind of external work for compaction and gets consolidated by own weight and thereby providing a lot of economic and technical benefits. It flows under own weight to completely fill forms and pass without segregation, through closely spaced reinforcement. Alccofine is a pozzolanic material and the ultrafine particles of Alccofine provide better workability, strength as well as the economy. Properties of M40 S.C.C. control mix was compared with S.C.C. mixes incorporating 1% of glass fiber and replacing different percentages (0%, to 15% by weight) of cement with Alccofine was studied. Optimum replacement of cement was assessed by studying properties in the fresh state and in the hardened state, and then comparing results with properties of control mix. Fresh state properties of S.C.C. were assessed by L box test, slump-flow test and V funnel test. Compressive strength, flexural strength, and splitting tensile strength tests were done to assess hardened state properties. Properties of S.C.C. in Fresh and hardened state were seen to be enhanced by addition of Alccofine and Glass fiber.

2018 ◽  
Vol 7 (3.12) ◽  
pp. 209
Author(s):  
Bletty Baby ◽  
Jerry Anto ◽  
Basil Johny ◽  
Sreenath S

In this study, observations were made on the effect of blending cement with fly ash and Alccofine on the fresh and hardened properties of micro steel fibre reinforced self-consolidating concrete (SCC). SCC mixes were prepared based on EFNARC guidelines. Blending has been done by replacing 5%, 10% and 15% of cement with Alccofine. Slump flow, L-box and V-funnel tests were conducted to study the flow characteristics of SCC. Compressive strength, split tensile strength, and flexural strength tests were performed to assess the strength characteristics. It was observed that the SCC with 10% replacement of cement with Alccofine showed better results than the other mixes. Further, the modification of the optimum blend with 10% Alccofine was made by adding variable percentages (0.5%, 1% and 1.5% by volume) of micro steel fibres and strength tests were conducted to optimise the fibre content. The strength degradation of the SCC with optimum Alccofine and fibre content exposed to alkaline, chloride and sulphate solutions was also studied.


2017 ◽  
Vol 22 (3) ◽  
Author(s):  
Marco Antônio de Morais Alcantara ◽  
Sandra Conceição Barbosa Nunes ◽  
João Filipe Meneses Espinheira Rio ◽  
Dario Cardoso de Lima

ABSTRACT The article presents a study of design parameters for the fresh self-compacting soil-cement so that it can be framed under the action of its own weight in the production of prefabricated elements. In the experimental work, it was used a residual soil of the region of Porto, Portugal, Portland cement, water and an additive of steric and electrostatic actuation as superplasticizer. The proportion of materials were related to soil dry weight with cement contents ranging from 20, 25, and 30%, water from 41, 44 and 47%, and superplasticizer from 0.66, 0.84 and 0.93%. The tests performed on fresh state fit into assessment protocols used for self-compacting mortars and concretes, and refer to the spreading test using a mini cone and the flow test with the aid of a funnel. In the hardened state, it was performed the unconfined compression test. The results indicated that the fresh self-compacting soil-cement falls technologically into the behavior observed in concretes and mortars, distinguishing the expressive influence of water and superplasticizer as fluidity agents, and soil and cement as viscosity controlling agents. Amounts of these constituents were defined in order to better optimize the conditions of fluidity and mobility of the mixtures, which may have as primary parameter of dosage the water/cement ratio, with regard to mechanical strength, and the specimens apparent density. The properties of fluidity and mobility are preferably correlated with the water/(cement+soil) ratio.


2012 ◽  
Vol 28 (1) ◽  
pp. 499-505 ◽  
Author(s):  
Nathan Tregger ◽  
Amedeo Gregori ◽  
Liberato Ferrara ◽  
Surendra Shah

2013 ◽  
Vol 687 ◽  
pp. 204-212 ◽  
Author(s):  
Ioana Ion ◽  
José Barroso Aguiar ◽  
Nicolae Angelescu ◽  
Darius Stanciu

It was carried out a study on the properties of polymer modified concrete (PCM) in fresh and hardened state. It was used three types of polymers: epoxy resins, polyurethane and methylcellulose in different percentages and different water cement ratio. The main objectives was to improve workability and rheological behavior of these mixtures in fresh state and mechanical strength tests on hard concrete. Has been investigated the polymer influence on compression strength and flexural strength and analyzing the time evolution of these strengths and participation of polymer in the microstructure formation.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 264
Author(s):  
G J. Prasannaa Venkatesh ◽  
S S.Vivek ◽  
G Dhinakaran

Self-compacting concrete (SCC) is the flowable concrete which tends to fill the formwork under its weight without external compaction. In the present research, 9 different SCC mixes in binary blend along with control SCC and conventional vibrated concrete (CVC) mixes were developed. In binary combination, cement was partially replaced by SF from 7 to 21%, MK from 10 to 30% and GGBS from 20 to 60%. For the above 9 combinations of SCC mixes, the basic rheological properties test namely slump flow and T500 were carried out in the fresh state of SCC. The flowability was achieved using Superplasticizer and viscosity modifying admixture (VMA), added by the percentage of the weight of cement. In hardened state, the compressive strength of the cube specimens and the split tensile strength of the cylinder specimens were carried out.  


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 985
Author(s):  
Ghafur H. Ahmed ◽  
Hawreen Ahmed ◽  
Babar Ali ◽  
Rayed Alyousef

High-performance self-consolidating concrete is one of the most promising developments in the construction industry. Nowadays, concrete designers and ready-mix companies are seeking optimum concrete in terms of environmental impact, cost, mechanical performance, as well as fresh-state properties. This can be achieved by considering the mentioned parameters simultaneously; typically, by integrating conventional concrete systems with different types of high-performance waste mineral admixtures (i.e., micro-silica and fly ash) and ultra-high range plasticizers. In this study, fresh-state properties (slump, flow, restricted flow), hardened-state properties (density, water absorption by immersion, compressive strength, splitting tensile strength, flexural strength, stress-strain relationship, modulus of elasticity, oven heating test, fire-resistance, and freeze-thaw cycles), and cost of high-performance self-consolidating concrete (HPSCC) prepared with waste mineral admixtures, were examined and compared with three different reference mixes, including normal strength-vibrated concrete (NSVC), high-strength self-compacted concrete (HSSCC), and high-performance highly-viscous concrete (HPVC). Then, a multi parameter analytical approach was considered to identify the optimum concrete mix in terms of cost, workability, strength, and durability.


Author(s):  
Fernanda Rodrigues Santos Valle ◽  
Paulo Cesar Gonçalves ◽  
Maria Gabriela A. Ranieri ◽  
Mirian de Lourdes Noronha Motta Melo ◽  
Valquíria Claret dos Santos

abstract: The utilization of wastes from demolition in civil construction in self compacting concrete (SCM) has the potential to reduce both the environmental impact and financial cost. In this context, this article aims to verify the behavior of the incorporation of recycled aggregates of civil construction in the mix designs of self-compacting mortar (SCM) in replacing cement, presenting as an interesting alternative to natural raw materials. This study used the EMMA® software to optimize the choice of percentages of fine recycled aggregates when replacing cement. The proportions chosen were 0%, 5%, 15%, and 25%, through the analysis of the granular packing curve of the respective mix designs. The proportion of 0% has in its composition cement, metakaolin, sand, superplasticizer (SP) and water. The parameters obtained, through tests in the fresh state of the mini-slump and mini-funnel V, certified the samples as SCM. The compressive strength and flexural tensile strength tests in the hardened state demonstrated a reduction in mechanical properties of the material with cement replacement. It is concluded that the waste used brick and ceramic can be added in replacement to the cement in SCM without significant loss of properties in the fresh and hardened state.


2016 ◽  
Vol 9 (6) ◽  
pp. 969-988 ◽  
Author(s):  
R. S. Alferes Filho ◽  
◽  
F. K. Motezuki ◽  
R. C. O. Romano ◽  
R. G. Pileggi ◽  
...  

ABSTRACT The use of self-compacting concrete in civil construction industry presents various advantages, since the material shows adequate workability during fresh state. When fiber reinforcement is used, there are changes in its behavior that require attention. This study aimed to evaluate the applicability of rheological tests and the correlation between its results and those obtained with regular tests used to control SCCs. In that sense, different mixtures of SCC with different steel fiber contents were produced in order to be analyzed in the experimental program described. Rotational rheology tests and slump flow and L-box tests were performed. The results showed that slump flow test did not present good correlations with rheological parameters. On the other hand, this test was able to point out the risk of segregation of the mixtures with higher fiber contents. A good correlation was obtained between the L-box test results and rheological parameters. The L-box was also able to show loss in the passing ability of SCC related to the rise of plastic viscosity and yield stress. These tests also presented a good correlation with the rheological parameters when lower fiber contents were used. Although the rheometry test was unable to evaluate these problems, this kind of test gave more objective and reliable data on variations in rheological parameters related to the increase of fiber content, and proved to be a more reliable test to this kind of application, especially when applied together with the conventional tests.


Jurnal CIVILA ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 267
Author(s):  
Rita Hardianti Aris ◽  
Erniati Bachtiar ◽  
Ritnawati Makbul

The purpose of this study was to investigate the relationship between molarity and workability in Self-Compacting Geopolymer Concrete (SCGC), as well as mechanical properties. Compressive strength and split tensile strength tests are used to characterize the mechanical characteristics in this research. Additionally, the study investigates the optimal molarity for self-compacting geopolymer concrete. Fly ash was used in lieu of cement in this research. On new concrete self-compacting geopolymer, workability is determined using the EFNARC standard, which includes the Slump Flow, V-Funnel, and L-Box tests. ASTM 39/C 39M-99 standard is used to determine the compressive strength of self-compacting concrete geopolymer. On new concrete, workability is determined using the EFNARC standard, which comprises the Slump Flow Test, a V-funnel, and an L-Box. The compressive strength of concrete samples is determined according to the ASTM 39/C 39M – 99 standard. The SNI 03-2491-2002 standard is used to determine the split tensile strength of concrete. At the ages of 7, 14, and 28 days, tests were conducted. The findings indicated that new concrete at 11M-13M satisfied the criteria for SCGC workability. The compressive and split tensile strengths of SCGC grow as the concrete ages. In self-compacting geopolymer concrete, the optimal molarity is 13 M.


2019 ◽  
Vol 12 (1) ◽  
pp. 179-198
Author(s):  
V. C. SANTOS ◽  
R. D. VANDERLEI ◽  
K. K. MORAES ◽  
E. T. D. F. ROSINA ◽  
G. M. BALBINO

Abstract Self-compacting concrete (SCC) is a material with high workability and moderate viscosity when compared to conventional concrete. Due to its advantages, the SCC has been investigated in the last decades and the research studies the use of new components in its structure and the search for the improvement of its performance, both in the fluid and in the hardened state. The goal of this study was to evaluate the behavior of self-compacting mortars with limestone filler and with the addition of sugarcane bagasse ash (SBA) partially replacing the small aggregate. To reach this goal, initially, a rate of replacement of natural sand by SBA was set. Afterwards, slump-flow and funnel-V tests were carried out in order to check the behavior of the mortars in the fresh state. After checking the behavior of the mortars in their fresh state, the different mix proportions that achieved the best aspects of fluidity and viscosity was selected, and, for self-compacting mortars, specimens were molded to determine tensile strength at 28 days, and compressive strength at 7 and 28 days. The experimental analyses demonstrated an increase in viscosity and reduction in fluidity with increasing content of limestone filler, facilitating the obtaining of self-compacting mortars. Regarding the performance of the material in the hardened state, the mortars showed a slight increase in tensile and compressive strength due to the filler effect of fines. It was possible to replace 40% of the small aggregate with SBA.


Sign in / Sign up

Export Citation Format

Share Document