scholarly journals Effect of Heat treatment on Fatigue Behavior of B4C and Copper Coated short Basalt fiber Reinforced Al 2014 Based Hybrid Composite

Author(s):  
Ranganatha S R ◽  
Shantharaja M ◽  
Manjunatha M V

Boron carbide (B4C) particulate and Copper coated Basalt fiber reinforced Al2014 composites were fabricated by stir casting technique. Boron carbide particles and short copper coated basalt fiber were varied from 2 wt. % to 8 wt. % in steps of 2 %. To improve the interfacial bonding between basalt fiber and matrix Al2014 alloy, the fibers are coated with copper by electroless deposition method. The Scanning Electron Microscope (SEM) clearly shows the uniform coating of copper on the surface of fiber and also observed that, increased wt % of reinforcement in ascast composites results in momentous progress in fatigue strength. The addition of boron carbide shows better fatigue strength compared to the addition of copper coated basalt fiber in Al2014. The Heat treated hybrid composites for all weight % of reinforcement’s shows 1.2 to 2 % better fatigue life as compared to ascast composites. This may be due to the refinement of grains and development of strong intermolecular bonding between the particles of composites. The fracture analysis done by SEM, clearly revealed that the crack initiated from the region of voids or porosity in the matrix and not in the region of boron carbide and copper coated basalt fiber interface.

2019 ◽  
Vol 895 ◽  
pp. 187-193 ◽  
Author(s):  
S.R. Ranganatha ◽  
M. Shantharaja

In this research work an effort has been made to study the tensile behavior of boron carbide and copper coated short basalt fiber reinforced with Al2014 based hybrid composites are prepared by stir casting technique. To avoid the interfacial reactions between basalt fiber and matrix Al2014 alloy the fibers are coated with copper using copper sulphate solution by electroless deposition method.The coated fiber was observed by scanning electron microscopy (SEM). It has been clearly revealed the uniform deposition of copper on the surface of fiber and tensile behavior of Hybrid composites was increased with increase in the wt% of reinforcements. At 6% boron carbide and 8% copper coated basalt fiber shows maximum tensile property.


Author(s):  
V Vignesh Kumar ◽  
K Raja ◽  
T Ramkumar ◽  
M Selvakumar ◽  
TS Senthil Kumar

The research article addresses the reciprocating wear behaviour of hybrid AA7075 reinforced with boron carbide and boron nitride through a stir-casting technique. The experiment involved varying wt.% of the secondary particle boron carbide (3, 6 and 9) while boron nitride (3) was kept as constant. The hybrid composites were characterised using scanning electron microscopy coupled with energy dispersive spectroscopy. The hardness and tensile behaviour of the hybrid composites were evaluated. Reciprocating wear behaviour of the hybrid composites were examined using a tribometer by varying the wear parameters such as load and sliding distance. The results revealed that AA7075/6boron carbide/3boron nitride had better hardness, tensile and wear properties. The surface morphology of the wear samples was analysed using SEM.


2021 ◽  
pp. 002199832110055
Author(s):  
Zeeshan Ahmad ◽  
Sabah Khan

Alumnium alloy LM 25 based composites reinforced with boron carbide at different weight fractions of 4%, 8%, and 12% were fabricated by stir casting technique. The microstructures and morphology of the fabricated composites were studied by scanning electron microscopy and energy dispersive spectroscopy. Elemental mapping of all fabricated composites were done to demonstrate the elements present in the matrix and fabricated composites. The results of microstructural analyses reveal homogenous dispersion of reinforcement particles in the matrix with some little amount of clustering found in composites reinforced with 12% wt. of boron carbide. The mechanical characterization is done for both alloy LM 25 and all fabricated composites based on hardness and tensile strength. The hardness increased from 13.6% to 21.31% and tensile strength 6.4% to 22.8% as reinforcement percentage of boron carbide particles increased from 0% to 12% wt. A fractured surface mapping was also done for all composites.


2021 ◽  
Vol 15 (56) ◽  
pp. 217-228
Author(s):  
Milind K. Wasekar ◽  
Mohan P. Khond

The aim of this work is to investigate the influence of the addition of silicon carbide and molybdenum disulfide on the microstructure and the tensile strength of the Al-Flyash hybrid composites prepared using the stir casting technique. The composite with aluminum 6061 alloy as the matrix and flyash as the reinforcement, with different weight fractions, is investigated to study its microstructure and the tensile strength. The same has been compared with the hybrid composites with Aluminum-Flyash/SiC and Aluminum-Flyash/MoS2 for different weight fractions of the reinforcements. The tensile tests were conducted as per ASTM standard testing procedures at room temperature. From the results it is identified that tensile strength of the Al6061-Flyash composite is lesser than the Al6061-Flyash/SiC and Al6061-Flyash/MoS2 hybrid composites. It is also observed that increment in the composition of the SiC and MoS2 causes the increment in the tensile strength of the hybrid composite. This increment in the tensile strength is due to good interface bonding and uniform distribution of the reinforcements in the composite.


2015 ◽  
Vol 1101 ◽  
pp. 28-31 ◽  
Author(s):  
G.S. Shiva Shankar ◽  
S. Basavarajappa

An attempt has been made to develop and characterize the Al2219 reinforced with Boron carbide (B4C) and Molybdenum disulfide (MoS2) hybridcomposites. The hybrid composites were prepared by using stir casting technique. Theexperimentalresult evaluates the density,micro hardness test & tensiletest.Themicrostructure shows existence of randomly dispersed reinforcement particles andfine reinforcement particles in prepared hybrid composites.X-Ray powder diffraction (XRD) analysis were conducted this confirms the physical content of constituents present in prepared composites. SEM is used to examine fracture surface of tensile specimens for hybrid composites & this consists of ductile& brittle fracture of mixed mode.The test results revels that, themicro hardness and density is minimum for Al2219 and maximum for Al+3%B4C+5%MoS2. The tensile properties of the material vary according to the percentage of reinforcing material added.


2011 ◽  
Vol 45 (23) ◽  
pp. 2371-2378 ◽  
Author(s):  
V.P. Mahesh ◽  
Praseeda S. Nair ◽  
T.P.D. Rajan ◽  
B.C. Pai ◽  
R.C. Hubli

Boron carbide is one of the potential neutron-shielding materials and its use can be maximized for structural shielding application by dispersing it into metal matrixes such as aluminum. Dispersion of B4C and its interfacial stability is a major issue during its processing. This investigation is on the synthesis of B4C-reinforced 6061 aluminum matrix composite by liquid–metal stir-casting technique under optimized conditions after solving the issues related to the processing, and evaluation of the structural, mechanical, and interfacial characteristics. During processing of composites, pretreatment of B4C particles is necessary to improve its dispersion. However, higher preheating temperatures above 300°C lead to particle agglomeration in the matrix due to the formation of B2O3 phase during preheating. B2O3 is formed due to the surface oxidation of B4C particles above 300°C and this glassy phase leads to particle sintering and lump formation. Incorporation of particles preheated at 250°C has shown uniform distribution of particles in the composite. Interfacial characterization of the composite and the extracted B4C particles from the matrix has shown the presence of interfacial reaction products such as AlB2, Al3BC, AlB12, and AlB10.


2021 ◽  
Vol 5 (4) ◽  
pp. 100
Author(s):  
Anjum Saleem ◽  
Luisa Medina ◽  
Mikael Skrifvars

New technologies in the automotive industry require lightweight, environment-friendly, and mechanically strong materials. Bast fibers such as kenaf, flax, and hemp reinforced polymers are frequently used composites in semi-structural applications in industry. However, the low mechanical properties of bast fibers limit the applications of these composites in structural applications. The work presented here aims to enhance the mechanical property profile of bast fiber reinforced acrylic-based polyester resin composites by hybridization with basalt fibers. The hybridization was studied in three resin forms, solution, dispersion, and a mixture of solution and dispersion resin forms. The composites were prepared by established processing methods such as carding, resin impregnation, and compression molding. The composites were characterized for their mechanical (tensile, flexural, and Charpy impact strength), thermal, and morphological properties. The mechanical performance of hybrid bast/basalt fiber composites was significantly improved compared to their respective bast fiber composites. For hybrid composites, the specific flexural modulus and strength were on an average about 21 and 19% higher, specific tensile modulus and strength about 31 and 16% higher, respectively, and the specific impact energy was 13% higher than bast fiber reinforced composites. The statistical significance of the results was analyzed using one-way analysis of variance.


2013 ◽  
Vol 20 (4) ◽  
pp. 343-350 ◽  
Author(s):  
Pandian Amuthakkannan ◽  
Vairavan Manikandan ◽  
Jebbas Thangaiah Winowlin Jappes ◽  
Marimuthu Uthayakumar

AbstractMechanical properties of fiber reinforcement that can be obtained by the introduction of basalt fibers in jute fiber-reinforced polyester composites have been analyzed experimentally. Basalt/jute fiber-reinforced hybrid polymer composites were fabricated with a varying fiber percentage by using compression molding techniques. The fabricated composite plates were subjected to mechanical testing to estimate tensile strength, flexural strength and impact strength of the composites. The effect of fiber content on basalt/jute fiber in the composites has been studied. Addition of jute fiber into basalt fiber composite makes it a cost-effective one. Incorporation of basalt fiber into the composites was at approximately 10%, 20%, up to 90%, and the jute fiber percentage was reduced from 90%, 80%, to 10% correspondingly. Mechanical properties were investigated as per ASTM standards. Tensile and flexural strengths were tested by using a computer-assisted universal testing machine, and impact strength by using an Izod impact tester. It has been observed that the addition of jute fiber to the basalt fiber polyester composites enhanced the mechanical properties. Water absorption of hybrid composites was also analyzed and was found to be proportional to fiber percentage.


In this research, an effort is made to familiarize and best potentials of the reinforcing agent in aluminum 7075 matrices with naturally occurring Beryl (Be) and Graphene (Gr) to develop a new hybrid composite material. A stir casting technique was adopted to synthesize the hybrid nanocomposites. GNPS were added in volume fractions of 0.5wt%, 1wt%, 1.5wt%, and 2wt% and with a fixed volume fraction of 6 wt.% of Beryl. As cast hybrid composites were microstructurally characterized with scanning electron microscopy and X-ray diffraction. Microstructure study through scanning electron microscope demonstrated that the homogeneous distribution reinforcement Beryl and GNPs into the Al7075 matrix. Brinell hardness and tensile strength of synthesized materials were investigated. The hybrid Al7075-Beryl-GNPs composites showed better mechanical properties compared with base Al7075 matrix material. The ascast Al7075-6wt.% Beryl-2wt.%GNPs showed 49.41% improvement in hardness and 77.09% enhancement in ultimate tensile strength over Al7075 alloy.


2015 ◽  
Vol 60 (2) ◽  
pp. 1331-1334 ◽  
Author(s):  
M.C. Oh ◽  
H. Yeom ◽  
Y. Jeon ◽  
B. Ahn

Abstract The influence of surface heat treatment using laser radiation on the fatigue strength and corresponding microstructural evolution of AISI 4140 alloy steel was investigated in this research. The AISI 4140 alloy steel was radiated by a diode laser to give surface temperatures in the range between 600 and 800°C, and subsequently underwent vibration peening. The fatigue behavior of surface-treated specimens was examined using a giga-cycle ultrasonic fatigue test, and it was compared with that of non-treated and only-peened specimens. Fatigue fractured surfaces and microstructural evolution with respect to the laser treatment temperatures were investigated using an optical microscope. Hardness distribution was measured using Vickers micro-hardness. Higher laser temperature resulted in higher fatigue strength, attributed to the phase transformation.


Sign in / Sign up

Export Citation Format

Share Document