scholarly journals Design and Analysis of Figure Eight Shaped Slot Antenna Array for Wideband Applications

An eight shaped annular ring slot antenna array is presented. Feed is designed with T shaped Power divider and quarterwave transformer is used. Antenna element is comprised of two linked annular slots to achieve high band width. Analysis is carried out with HFSS simulation software. Array is configured with corporate feed structure. It has been observed tha gain is increased to 4dB to 5dB and return loss band width increased from 600 MHz to 1.2 GHz around 55%, Cross polarization level also significantly decreased,

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Guang Sun ◽  
Ge Gao ◽  
Tingting Liu ◽  
Yi Liu ◽  
Hu Yang

In this paper, a wideband slot antenna element and its array with stereoscopic differentially fed structures are proposed for the radar system. Firstly, a series of slots and a stereoscopic differentially fed structure are designed for the antenna element, which makes it possess a wide bandwidth, stable radiation characteristics, and rather high gain. Moreover, the stereoscopic feeding structure can firmly support the antenna’s radiation structure and reduce the influence of feeding connectors on radiating performance. Secondly, a 4 × 4 array is designed using the proposed antenna element. And a hierarchical feeding network is designed for the array on the basis of the stereoscopic differentially fed structure. For validation, the antenna element and 4 × 4 array are both fabricated and measured: (1) the measured −10 dB impedance bandwidth of the antenna element is 62% (6.8–12.9 GHz) and the gain within the entire band is 5–9.7 dBi and (2) the measured −10 dB impedance bandwidth of the array is approximately 50% (7 to 12 GHz) with its gain being 14–19.75 dBi within the entire band. Notably, measured results agree well with simulations and show great advantages over other similar antennas on bandwidth and gain.


2018 ◽  
Vol 8 (8) ◽  
pp. 1410 ◽  
Author(s):  
Kwok So ◽  
Kwai Luk ◽  
Chi Chan ◽  
Ka Chan

By employing the complementary dipole antenna concept to the normal waveguide fed slot radiator, an improved antenna element with wide impedance bandwidth and symmetrical radiation patterns is developed. This is achieved by mounting two additional metallic cuboids on the top of the slot radiator, which is equivalent to adding an electric dipole on top of the magnetic dipole due to the slot radiator. Then, a high-gain antenna array was designed based on the improved element and fabricated, using 3D printing technology, with stable frequency characteristics operated at around 28 GHz. This was followed by metallization via electroplating. Analytical results agree well with the experimental results. The measured operating frequency range for the reflection coefficient ≤−15 dB is from 25.7 GHz to 29.8 GHz; its corresponding fractional impedance bandwidth is 14.8%. The measured gain is approximately 32 dBi, with the 3 dB beamwidth around 4°.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Meng Xiang ◽  
Yu Xiao ◽  
Bin Xi ◽  
Yue Zhang ◽  
Shiyou Xu

A wideband, low cross-polarization, high-gain, and wide-angle scanning antenna array is presented in this paper. The antenna array contains 8 subarrays in the horizontal dimension, and each subarray contains 4 unit cells. A two-side printed dipole with an amendatory equivalent circuit model is adopted, and the metal vias are introduced in the element design to ameliorate the cross-polarization level. A radome, acting as the wide-angle impedance matching layer, is introduced to achieve wide-angle scanning. A prototype of a 4 × 8 array is fabricated and measured. The results show that the operating bandwidth of aperture efficiency (BWAE) above 60% is about 26.7% from 2.6 GHz to 3.4 GHz. The measured scanning loss in the H-plane is 2.7 dB when scanning up to 60° with active voltage standing wave ratio (VSWR) <3, and the gain can achieve 21 dB at 3 GHz with a cross-polarization level below −30 dB at all angles.


2020 ◽  
Vol 8 (6) ◽  
pp. 5464-5468

In this paper we are presenting the validation of the LG RF Simulation tool (WAVE) and HFSS simulation software’s through measurement results of the fabricated design, simulated in WAVE and HFSS simulation software’s. A 2 x 2 antenna array with Electromagnetic Band Gap (EBG) structure in the ground plane is simulated using WAVE and HFSS ver. 17.The prototype antenna was fabricated and characterization is carried out at CHRIST (Deemed to be University) Bangalore to know the performance of the antenna array. Return Loss and VSWR of the fabricated antenna are measured using Anritsu S820E Microwave Site Master Network Analyzer. Two - dimensional radiation patterns were plotted and compared with the simulated results obtained from WAVE and HFSS Software’s. From the results of HFSS simulation software we observed that EBG integrated array is exhibitinggainof7.089dB and Return loss of -16.2 dBat2.4GHz.Whereas the results obtained from WAVE simulation tool for the same design gave a peak gain of 5.03 dB and return loss of -12.8dB at 2.4 GHz. Measured gain of the designed array is 7.407 dB and return loss is -7.565 dB at 2.4 GHz.


Author(s):  
Deepika Pathak ◽  
Sudhir Kumar Sharma ◽  
Vivek Singh Kushwah

This article presents a triple band hybrid cylindrical Ring Dielectric resonator antenna. The proposed antenna consists of Ring Dielectric resonator antenna and has a reformed pentagon shaped slot antenna. By the help of HFSS simulation software this proposed antenna has been designed. The return loss of the proposed antenna is -16dB, -20dB, -15dB respectively at frequency of 4.7GHz, 6.1GHz, 7.5 GHz respectively. The proposed antenna is applicable for c-band applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Nadeem Ashraf ◽  
Hamsakutty Vettikalladi ◽  
Majeed A. S. Alkanhal

The concept of substrate integrated waveguide (SIW) technology along with dielectric resonators (DR) is used to design antenna/array for 60 GHz communication systems. SIW is created in the substrate of RT/duroid 5880 having relative permittivityεr=2.23and loss tangenttan⁡δ=0.003. H-shaped longitudinal slot is engraved at the top metal layer of the substrate. Two pieces of the DR are placed on the slot without any air gap. The antenna structures are modeled using CST Microwave Studio and then the results are verified using another simulation software HFSS. Simulation results of the two designs are presented; first a single antenna element and then to enhance the gain of the system a broadside array of1×4is presented in the second design. For the single antenna element, the impedance bandwidth is 10.33% having a gain up to 5.5 dBi. Whereas in an array of1×4elements, the impedance bandwidth is found to be 10.70% with a gain up to 11.20 dBi. For the single antenna element and1×4antenna array, the simulated radiation efficiency is found to be 81% and 78%, respectively.


2014 ◽  
Vol 7 (2) ◽  
pp. 205-208 ◽  
Author(s):  
Mustafa Murat Bilgiç ◽  
Korkut Yeğin

Wideband microstrip antenna with L-plate capacitively coupled feed structure is designed. The antenna operates in GSM 1800/1900 (1710–1910 MHz) and UMTS I (1920–2170 MHz) frequency bands. The antenna has dual slant (±45°) polarization with high isolation (>25 dB) between the ports. Measurements of the antenna reveal good performance in terms of impedance match, gain, gain flatness, isolation, half-power beamwidth, cross-polarization level, and front-to-back ratio. The proposed antenna can be used in base station antenna arrays, pico-cell, and femto-cell small-area cellular networks.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Hongxin Zhao ◽  
Yufu Li ◽  
Xiaoxing Yin

A Gaussian tapered slot antenna based on post-wall structured slotline for improvement of cross-polarization for ultra-wideband applications is proposed and experimentally demonstrated. The antenna is composed of two pairs of Gaussian tapered slotline which have the same structure printed on both sides of the PCB, two metallic via arrays positioned along the slot edges, and two terminal resistors. The metallic via arrays are used to reduce the characteristic impedance of the conventional slotline which form a post-wall slotline and thus can be fed by a coaxial connector directly. More importantly, the balanced symmetrical post-wall structure ensures low cross-polarization levels of the antenna. The Gaussian tapered edges and the terminal resistors diminish reflected signal and thus can enlarge the bandwidth significantly. Good agreements between the simulated and the measured results have been observed. Results show that the proposed antenna exhibits a −10 dB impedance bandwidth from 1.5 GHz to 20 GHz, a maximum realized gain of 12 dBi, and the broadside cross-polarization level is averaged about −32 dB in the lower frequency band and −25 dB in the higher frequency band with a maximum value of −22 dB in the whole working frequency band.


Sign in / Sign up

Export Citation Format

Share Document