scholarly journals Combustion of Plastic Pyrolysis Oil in Steam-Atomizing Burner and Its Application for Pyrolysis Process

In recent years, there has been growing interest in alternative energy sources to fossil fuels. One of them is plastic pyrolysis oil (ppo) that converted from plastic waste by the pyrolysis process. The oil could be used as a fuel for combustion process in some industries. The performance of ppo combustion in steam-atomizing burner was investigated to determine the feasibility of diesel oil displacing in pyrolysis process heating. A prototype steam-atomizing burner was installed to burn plastic pyrolysis oil, with variable 3, 6, and 9 bar steam pressure, to pyrolyze 10 kg/batch low density polyethylene (LDPE) waste in a batch reactor. The pyrolysis process was maintained at 3500C along 2 hours at atmospheric condition. The flame temperature, the length of flame, fuel consumption, heating rate, and pyrolysis yield was observed along the process. The experiment shows that the increase of steam pressure will increase all parameters. The most optimum condition is plastic pyrolysis oil combustion using steam-atomizing burner at 9 bar steam pressure, which consumes 28 litre of fuel and yields 57% of pyrolysis oil.

2013 ◽  
Vol 634-638 ◽  
pp. 768-774
Author(s):  
Yuan Yu Tian ◽  
Ying Yun Qiao

A new mechanism of saving energy and reducing pollution is brought forward by analyzing water characters in high temperature condition and all factors which bring saving energy and reducing pollution in the combustion process of emulsification oil. The theory shows that the reason of saving energy and reducing pollution is that emulsification oil can reduce surplus air ratio effectively in the combustion process. These reasons include that of improving the burning flame temperature, avoiding the local super-high temperature, decreasing the amount of NOX and the conversion of SO2 oxidize to SO3, strengthening the burning and heat transmission and reducing the soot of the flue gas.By this new theory, the reasons of saving energy and reducing pollution in the combustion process of emulsification gasoline, emulsification diesel oil, emulsification heavy oil and other slurry fuel of W/O or O/W can be well explained. At the same time, the new mechanism was well validated in the combustion process of hard asphalt water slurry.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1779
Author(s):  
Rafał Ślefarski ◽  
Joanna Jójka ◽  
Paweł Czyżewski ◽  
Michał Gołębiewski ◽  
Radosław Jankowski ◽  
...  

There has been a gradual increase in the field of parts recovery from cars that are withdrawn from use. However, the disposal of automotive shredder residue (ASR) still remains a significant problem. ASR is refuse derived fuel (RDF), which contains mainly plastics, fiber sponges, and rubbers in different proportions, and therefore a thermal treatment of selected waste samples is applied. The presented research includes thermogravimetry (TG) analysis and differential thermogravimetric (DTG) analysis, as well as a proximate and an ultimate analysis of the ASR samples. The obtained results were processed and used as an input for modelling. The numerical calculations focused on the identification of the ASR’s average composition, the raw pyrolysis process product, its dry pyrolytic gas composition, and the combustible properties of the pyrolytic gases. The TGA analysis with three heating rate levels covered the temperature range from ambient to 800 °C. The thermal decomposition of the studied samples was in three stages confirmed with three peaks observed at the temperatures 280, 470, and 670 °C. The amount of solid residue grew with the heating rates and was in the range of 27–32 wt%. The numerical calculation of the pyrolysis process showed that only 0.46 kg of dry gas were formed from 1 kg of ASR. The gas yield increased with the rising temperature, and, at the same time, its calorific value decreased from 19.22 down to 14.16 MJ/m3. This is due to the decomposition of C6+ hydrocarbons and the promotion of CO formation. The thermodynamic parameters of the combustion process for a pyrolytic gas air mixture, such as the adiabatic flame temperature and laminar flame speed, were higher than for methane and were, respectively, 2073 °C and 1.02 m/s.


2020 ◽  
Vol 148 ◽  
pp. 02001
Author(s):  
Muh. Ilham Anggamulia ◽  
Mindriany Syafila ◽  
Marisa Handajani ◽  
Andri Gumilar

Biomass is a central issue as new material that can be used as a substrate to produce biofuels, it has become global research to replace liquid fossil fuels with alternative renewable and sustainable fossils. Palm oil mill effluent (POME) is the potential of Agri-industrial waste to be used as alternative energy with anaerobic digestion of high concentration organic wastewater can be used for bioethanol production to replace food as raw material. Bioethanol can be produced in acidogenic steps in the organic degradation process. In this research, bacterial mixed cultures sourced from bovine rumen as biomass and the substrate used was palm oil mill effluent (POME) with a characteristic COD concentration of 25,600 mg/L, The operation of the reactor is set at pH 5; 6; 7 for 72 hours with the type of anaerobic circulating batch reactor (CBR), measurement of bioethanol products and acidogenesis of samples is carried out every 6 hours. The results showed that the reactor with variations in pH conditions 5 gave the highest efficiency of bioethanol formation in the 12 hour running process, result is 102,94 mg/L with a maximum formation rate of 9,98 mg/L/hour.


2019 ◽  
Vol 122 ◽  
pp. 01005
Author(s):  
Sasiradee Jantasee ◽  
Natacha Phetyim ◽  
Komm Petchinthorn ◽  
Tunyahpat Thanupongmanee ◽  
Nuntiporn Sripirom

The production of pyrolysis oil from polypropylene plastic waste was examined over molybdenum modified alumina-silica catalysts (Mo/Al-Si). The reactions were carried out with 1 L of batch reactor under atmospheric pressure at 430 °C. The pyrolysis oil yield was in the order, 10% Mo/Al-Si > 5% Mo/Al-Si > the absence of catalyst. The 10% Mo/Al-Si was highest activity due to the stronger acidity facilitating the pyrolysis reaction. It accelerated the reaction to produce the pyrolysis oil at lower temperature. Comparison of the pyrolysis oil properties to the standards of the diesel fuel from Thai Department of Energy Business shows that the color and the distillation were within standards. Moreover, the results reveal that the kind of raw material affected the product yield of pyrolysis process.


Author(s):  
Cdr (E) dr. ir. Geertsma ◽  
ir. M Krijgsman

The Netherlands Ministry of Defence have declared the ambition to reduce its fossil fuel dependency by at least 20% in 2030 and by at least 70% in 2050. For the Royal Netherlands Navy (RNLN), these targets seem more stringent than the initial strategy on greenhouse gas reduction for ships agreed by IMO, which aims for 50% reduction in total annual global shipping emission by 2050. The RNLN is currently investigating the replacement of a series of support vessels, 5 ships between 1000 and 2000 tons that perform hydrographic, submarine exercise support, civil support and seamanship training operations. These vessels perform support operations, are not volume critical in their design and have a limited mission duration of 2 to 3 weeks, and thus seem good candidates for alternative fuels and alternative power systems, such as fuel cells and batteries, that have emissions with a minimum impact on the environment. This study presents a novel approach to compare various alternative energy carrier and power system options with the Ships Power and Energy Concept (SPEC) exploration tool. We first introduce the baseline vessel and introduce the various fuels and technologies considered. We consider marine diesel oil as a baseline and alternative energy carriers hydrogen, methanol or ammonia and batteries. We review the fuels, their current and future availability and their impact on the environment. Moreover, we review the power system technologies, considering diesel generators running on marine diesel oil, methanol, ammonia or dimethyl ether, fuel cells running on hydrogen or methanol and batteries as the only power supply, recharged when ashore. Furthermore, we review power system designs with the combinations of fuel and power supply identified above and will consider: the mass and volume of the power system configurations and energy storage, fuel or batteries; the estimated capital and operational expenditure; technology readiness level; logistic availability of the fuel; and the estimated yearly CO2 emissions. Electrical propulsion with electrical power supply from internal combustion engines running on methanol appears a mature and cost-effective candidate to achieve the reduction target of 70% reduction in CO2 emission and its related dependancy on fossil fuels, with a 10% increase in capital cost and double fuel cost.


2021 ◽  
Vol 13 (1) ◽  
pp. 19-24
Author(s):  
Teuku Andi Fadlly ◽  
Ida Ratna Nila ◽  
Nirmala Sari

Transesterification of palm oil using a TiO2/nano-Monmorillorite (nano-MMT) composite catalyst from Aceh Tamiang bentonite in Biodiesel production has been carried out. Biodiesel is bioenergy obtained from vegetable oils, animal fats, microorganisms, and plants. This is alternative energy to replace fossil fuels, especially diesel oil. Biodiesel is proven to be more environmentally friendly in reducing hydrocarbon and sulfur emissions. In this study, TiO2 will be composited with nano-MMT using the solid-state method and analyzed using XRD. Both of these materials are used as catalysts for biodiesel production. The transesterification process will be used in the production of biodiesel, where the molar ratio of palm oil to methanol is 1:12. TiO2/nano-MMT composite catalyst will be varied (2 and 4 grams). Biodiesel samples will be analyzed using GC-MS. The results obtained show that the TiO2/nano-MMT composite catalyst from Aceh Tamiang bentonite can convert Fatty Acid Methyl Ester (FAME) from palm oil. The 2 grams of the composite catalyst produced biodiesel of 89.38% and 4 grams of 64.88%.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 801
Author(s):  
Muhammad Nobi Hossain ◽  
Myung Kyu Choi ◽  
Hang Seok Choi

The increasing global population and the rapid industrial development associated therewith have increased the demand for fossil-derived fuel oils. The sources of fossil fuels are limited, and many studies have been being conducted to find alternative fuel sources. Waste tire pyrolysis oil (WTPO) attracts considerable attention as an alternative fuel because its properties are similar to those of diesel oil. However, WTPO has a high sulfur content of >1.0 wt%, which is above the environmental standard limit of 0.1 wt%; therefore, it cannot be used in engines directly. It is thus highly necessary to remove sulfur compounds from tire-derived oils. However, finding an appropriate and environmentally friendly process is proving difficult. This review article presents the various desulfurization methods used to removal sulfur from WTPO, such as hydrodesulfurization (HDS), oxidative desulfurization (ODS), ultrasound-assisted oxidative desulfurization (UAOD), and acid treatment. Of these, HDS is the most expensive as it involves high consumption of hydrogen, high temperature (~450 °C), and high pressure (~200 bar), whereas UAOD is an efficient and economic method of reducing the sulfur content of WTPO.


2017 ◽  
Vol 68 (11) ◽  
pp. 2676-2681
Author(s):  
Mihaela Gabriela Dumitru ◽  
Dragos Tutunea

The purpose of this work was to investigate the physicochemical properties of watermelon seeds and oil and to find out if this oil is suitable and compatible with diesel engines. The results showed that the watermelon seeds had the maximum length (9.08 mm), width (5.71mm), thickness (2.0 mm), arithmetic mean diameter (5.59 mm), geometrical mean diameter (4.69 mm), sphericity (51.6%), surface area (69.07), volume 0.17 cm3 and moisture content 5.4%. The oil was liquid at room temperature, with a density and refractive index of 0.945 and 1.4731 respectively acidity value (1.9 mgNaOH/g), free fatty acid (0.95 mgNaOH), iodine value (120 mgI2/100g), saponification value (180 mgKOH/g), antiradical activity (46%), peroxide value (7.5 mEqO2/Kg), induction period (6.2 h), fatty acid: palmitic acid (13.1%), stearic acid (9.5 %), oleic acid (15.2 %) and linoleic acid (61.3%). Straight non food vegetable oils can offer a solution to fossil fuels by a cleaner burning with minimal adaptation of the engine. A single cylinder air cooled diesel engine Ruggerini RY 50 was used to measure emissions of various blends of watermelon oil (WO) and diesel fuel (WO10D90, WO20D80, WO30D70 and WO75D25). The physic-chemical properties of the oil influence the combustion process and emissions leading to the reduction of NOX and the increase in CO, CO2 and HC.


2019 ◽  
Vol 40 (1) ◽  
pp. 7
Author(s):  
Marcelo Silveira de Farias ◽  
José Fernando Schlosser ◽  
Javier Solis Estrada ◽  
Gismael Francisco Perin ◽  
Alfran Tellechea Martini

The growing global demand of energy, the decrease of petroleum reserves and the current of environmental contamination problems, make it imperative to study renewable energy sources for use in internal combustion engines, in order to decrease the dependence on fossil fuels and reduce emissions of pollutant gases. This study aimed to evaluate the emissions of a diesel-cycle engine of an agricultural tractor that uses diesel S500 (B5) mixed with 3, 6, 9, 12 and 15% of hydrous ethanol. It determined emissions of CO2 (ppm), NOx (ppm), and opacity (k value) of gases. A standard procedure was applied considering eight operating modes (M1, M2, M3, M4, M5, M6, M7, and M8) by breaking with an electric dynamometer in a laboratory. The experimental design was completely randomized, with 60 replicates and a 6 x 8 factorial design. Greater opacity and gas emissions were observed when the engine operated with 3% ethanol, while lower emissions occurred with 12 and 15%. With these fuels, the reduction of opacity, CO2, and NOx, in relation to diesel oil, was 24.49 and 26.53%, 4.96 and 5.15%, and 6.59 and 9.70%, respectively. In conclusion, the addition of 12 and 15% ethanol in diesel oil significantly reduces engine emissions.


Author(s):  
Kau-Fui Vincent Wong ◽  
Guillermo Amador

As society continues advancing into the future, more energy is required to supply the increasing population and energy demands. Unfortunately, traditional forms of energy production through the burning of carbon-based fuels are dumping harmful pollutants into the environment, resulting in detrimental, and possibly irreversible, effects on our planet. The burning of coal and fossil fuels provides energy at the least monetary cost for countries like the US, but the price being paid through their negative impact of our atmosphere is difficult to quantify. A rapid shift to clean, alternative energy sources is critical in order to reduce the amount of greenhouse gas emissions. For alternative energy sources to replace traditional energy sources that produce greenhouse gases, they must be capable of providing energy at equal or greater rates and efficiencies, while still functioning at competitive prices. The main factors hindering the pursuit of alternative sources are their high initial costs and, for some, intermittency. The creation of electrical energy from natural sources like wind, water, and solar is very desirable since it produces no greenhouse gases and makes use of renewable sources—unlike fossil fuels. However, the planning and technology required to tap into these sources and transfer energy at the rate and consistency needed to supply our society comes at a higher price than traditional methods. These high costs are a result of the large-scale implementation of the state-of-the-art technologies behind the devices required for energy cultivation and delivery from these unorthodox sources. On the other hand, as fossil fuel sources become scarcer, the rising fuel costs drive overall costs up and make traditional methods less cost effective. The growing scarcity of fossil fuels and resulting pollutants stimulate the necessity to transition away from traditional energy production methods. Currently, the most common alternative energy technologies are solar photovoltaics (PVs), concentrated solar power (CSP), wind, hydroelectric, geothermal, tidal, wave, and nuclear. Because of government intervention in countries like the US and the absence of the need to restructure the electricity transmission system (due to the similarity in geographical requirements and consistency in power outputs for nuclear and traditional plants), nuclear energy is the most cost competitive energy technology that does not produce greenhouse gases. Through the proper use of nuclear fission electricity at high efficiencies could be produced without polluting our atmosphere. However, the initial capital required to erect nuclear plants dictates a higher cost over traditional methods. Therefore, the government is providing help with the high initial costs through loan guarantees, in order to stimulate the growth of low-emission energy production. This paper analyzes the proposal for the use of nuclear power as an intermediate step before an eventual transition to greater dependence on energy from wind, water, and solar (WWS) sources. Complete dependence on WWS cannot be achieved in the near future, within 20 years, because of the unavoidable variability of these sources and the required overhaul of the electricity transmission system. Therefore, we look to nuclear power in the time being to help provide predictable power as a means to reduce carbon emissions, while the other technologies are refined and gradually implemented in order to meet energy demand on a consistent basis.


Sign in / Sign up

Export Citation Format

Share Document