scholarly journals Experimental and Numerical-Driven Prediction of Automotive Shredder Residue Pyrolysis Pathways toward Gaseous Products

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1779
Author(s):  
Rafał Ślefarski ◽  
Joanna Jójka ◽  
Paweł Czyżewski ◽  
Michał Gołębiewski ◽  
Radosław Jankowski ◽  
...  

There has been a gradual increase in the field of parts recovery from cars that are withdrawn from use. However, the disposal of automotive shredder residue (ASR) still remains a significant problem. ASR is refuse derived fuel (RDF), which contains mainly plastics, fiber sponges, and rubbers in different proportions, and therefore a thermal treatment of selected waste samples is applied. The presented research includes thermogravimetry (TG) analysis and differential thermogravimetric (DTG) analysis, as well as a proximate and an ultimate analysis of the ASR samples. The obtained results were processed and used as an input for modelling. The numerical calculations focused on the identification of the ASR’s average composition, the raw pyrolysis process product, its dry pyrolytic gas composition, and the combustible properties of the pyrolytic gases. The TGA analysis with three heating rate levels covered the temperature range from ambient to 800 °C. The thermal decomposition of the studied samples was in three stages confirmed with three peaks observed at the temperatures 280, 470, and 670 °C. The amount of solid residue grew with the heating rates and was in the range of 27–32 wt%. The numerical calculation of the pyrolysis process showed that only 0.46 kg of dry gas were formed from 1 kg of ASR. The gas yield increased with the rising temperature, and, at the same time, its calorific value decreased from 19.22 down to 14.16 MJ/m3. This is due to the decomposition of C6+ hydrocarbons and the promotion of CO formation. The thermodynamic parameters of the combustion process for a pyrolytic gas air mixture, such as the adiabatic flame temperature and laminar flame speed, were higher than for methane and were, respectively, 2073 °C and 1.02 m/s.

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5864
Author(s):  
Anna Poskart ◽  
Magdalena Skrzyniarz ◽  
Marcin Sajdak ◽  
Monika Zajemska ◽  
Andrzej Skibiński

The article presents the possibilities of effective management of lignocellulosic waste by including it in the circular economy. The pyrolysis process was chosen as the thermal conversion method. This approach, due to a high flexibility of the obtained products, better quality of the solid residue (char), and the lower emission of pollutants into the atmosphere, e.g., SO2 and NOx, is a competitive solution compared to combustion process. Wood waste from alder and pine were analyzed. As part of laboratory tests, the elementary composition was determined, i.e., C, H, N, S, and O. The pyrolysis process was carried out at a temperature of 600 °C on an experimental stand for the conversion of solid fuels in a stationary bed. For the obtained data, using the Ansys Chemkin-Pro calculation tool, the detailed chemical composition of gaseous products of the pyrolysis process was modeled for a varying temperature range and residence time in the reactor. The studies have shown that for certain process conditions it is possible to obtain a high calorific value of pyrolytic gas, up to 25 MJ/m3.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3796
Author(s):  
Mudassar Azam ◽  
Asma Ashraf ◽  
Saman Setoodeh Setoodeh Jahromy ◽  
Sajjad Miran ◽  
Nadeem Raza ◽  
...  

In connection to present energy demand and waste management crisis in Pakistan, refuse-derived fuel (RDF) is gaining importance as a potential co-fuel for existing coal fired power plants. This research focuses on the co-combustion of low-quality local coal with RDF as a mean to reduce environmental issues in terms of waste management strategy. The combustion characteristics and kinetics of coal, RDF, and their blends were experimentally investigated in a micro-thermal gravimetric analyzer at four heating rates of 10, 20, 30, and 40 °C/min to ramp the temperature from 25 to 1000 °C. The mass percentages of RDF in the coal blends were 10%, 20%, 30%, and 40%, respectively. The results show that as the RDF in blends increases, the reactivity of the blends increases, resulting in lower ignition temperatures and a shift in peak and burnout temperatures to a lower temperature zone. This indicates that there was certain interaction during the combustion process of coal and RDF. The activation energies of the samples were calculated using kinetic analysis based on Kissinger–Akahira–Sunnose (KAS) and Flynn–Wall–Ozawa (FWO), isoconversional methods. Both of the methods have produced closer results with average activation energy between 95–121 kJ/mol. With a 30% refuse-derived fuel proportion, the average activation energy of blends hit a minimum value of 95 kJ/mol by KAS method and 103 kJ/mol by FWO method.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1682 ◽  
Author(s):  
Bin Yang ◽  
Ming Chen

Pyrolysis and gasification have gradually become the main means to dispose of automobile shredder residue (ASR), since these methods can reduce the volume and quality of landfill with lower cost and energy recovery can be conducted simultaneously. As the ASR pyrolysis process is integrated, the results of pyrolysis reactions of organic components and the interaction among polymeric components can be clarified by co-pyrolysis thermogravimetric experiments. The results show that the decomposition mechanisms of textiles and foam are markedly changed by plastic in the co-pyrolysis process, but the effect is not large for rubber and leather. This effect is mainly reflected in the pyrolysis temperature and pyrolysis rate. The pyrolytic trend and conversion curve shape of the studied ASR can be predicted by the main polymeric components with a parallel superposition model. The pyrolytic product yields and characterizations of gaseous products were analyzed in laboratory-scale non-isothermal pyrolysis experiments at finished temperatures of 500 °C, 600 °C, and 700 °C. The results prove that the yields of pyrolytic gas products are determined by the thermal decomposition of organic substances in the ASR and final temperature.


2020 ◽  
pp. 0734242X2096183
Author(s):  
Ing-Jia Chiou ◽  
Ching-Ho Chen

Landfill sites are hard to obtain in Taiwan. Municipal solid waste (MSW) in the closed landfill sites has high combustible content and calorific value (CV). Therefore, activating the closed landfill sites as municipal mine sites to prolong their service life will promote a sustainable environment. This study transforms combustibles from the closed municipal landfill sites of different landfill ages (LAs) into refuse-derived fuel (RDF) through pretreatment and squeeze forming equipment, so to investigate the characteristics of the MSW of different LAs, and the manufacturing conditions and firing behaviour of RDF. The results indicate that the proportion of the combustibles in MSW declines as the LA grows, and therefore the proportions of both incombustible materials and soil and debris correspondingly increased. The LA of the MSW is thus negatively correlated with the CV. The MSW at the LA of 10 years still has high potential as fuel material. The fixed carbon initiation temperatures (i.e. ignition temperatures) of combustibles of the MSW at the LAs of 1 year, 5 years and 10 years are 259°C, 256°C and 245°C, respectively. The CV and flame temperature of the RDF increase slightly with the increasing squeeze temperature (ST) at 100–120°C, but it will decrease when the ST reaches 130°C. Therefore, this study recommends the squeeze pressure of the RDF as 41.65 ± 8.24 kg cm−2, ST 110°C and combustible size 10–20 mm.


2021 ◽  
Vol 11 (3) ◽  
pp. 1219
Author(s):  
Botagoz Kuspangaliyeva ◽  
Botakoz Suleimenova ◽  
Dhawal Shah ◽  
Yerbol Sarbassov

Efficient waste management, including proper utilization of municipal solid waste (MSW), is imperative for a sustainable future. Among several management options, pyrolysis and combustion of MSW has regained interest because of improved combustion techniques. This work aims to investigate the thermal conversion and combustion characteristics of refuse derived solid fuel (RDF) samples and its individual compounds collected from Nur-Sultan’s MSW landfills. The waste-derived solid RDF samples originally consist of textile, mixed paper, and mixed plastic. In particular, the samples, including RDF and its three constituent components, were analyzed in the temperature range of 25 to 900 °C, at three different heating rates, by thermogravimetric method. The gross calorific value for RDF derived from Nur-Sultan’s MSW was determined to be 23.4 MJ/kg. The weight loss rates of the samples, differential thermogravimetry (DTG), and kinetic analysis were compared between individual RDF components and for the mixed RDF. Combustion kinetics models were calculated using Flynn–Wall–Ozawa (FWO), Kissinger–Akahira–Sunose (KAS), and Friedman methods. The results revealed that first decomposition of RDF samples was observed at the range of 180–370 °C. Moreover, the activation energy for conversion of RDF was observed to be the highest among the constituent components and gradually decreased from 370 to 140 kJ/kmol.


2021 ◽  
Author(s):  
Deepak Kumar Singhal ◽  
Divya Gupta ◽  
Anurag Garg

Abstract In the present study, the environmental emissions from co-combustion of refuse derived fuel (RDF) in cement plants and coal-fired power plants are predicted using mass and energy flow modeling. Mumbai was considered as study area and RDF characteristics were assessed using MSW composition in Mumbai. The modeling results suggested that with increase in RDF share in fuel mixture, significant reduction in environmental parameters such as winter smog, global warming and acidification potentials could be achieved, though the electricity and heat generation were reduced. This problem can be overcome by improving the quality of RDF. Moreover, thermal gravimetric analysis (TGA) of individual RDF components (compostable organic matter, paper, wood and plastic) was carried out in oxidative environment to understand their thermal stability. Average activation energies for plastic, wood and compostable organics (98.6–183 kJ/mol) were comparable to those reported for coal. The results suggest that coal and RDF co-combustion should not affect the combustion profile. Moreover, high plastic content in RDF can assist in control of combustion process and also can enhance its calorific value.


In recent years, there has been growing interest in alternative energy sources to fossil fuels. One of them is plastic pyrolysis oil (ppo) that converted from plastic waste by the pyrolysis process. The oil could be used as a fuel for combustion process in some industries. The performance of ppo combustion in steam-atomizing burner was investigated to determine the feasibility of diesel oil displacing in pyrolysis process heating. A prototype steam-atomizing burner was installed to burn plastic pyrolysis oil, with variable 3, 6, and 9 bar steam pressure, to pyrolyze 10 kg/batch low density polyethylene (LDPE) waste in a batch reactor. The pyrolysis process was maintained at 3500C along 2 hours at atmospheric condition. The flame temperature, the length of flame, fuel consumption, heating rate, and pyrolysis yield was observed along the process. The experiment shows that the increase of steam pressure will increase all parameters. The most optimum condition is plastic pyrolysis oil combustion using steam-atomizing burner at 9 bar steam pressure, which consumes 28 litre of fuel and yields 57% of pyrolysis oil.


2021 ◽  
Vol 13 (19) ◽  
pp. 10549
Author(s):  
Sandhya Kuruvalan Vijayan ◽  
Mahmud Arman Kibria ◽  
Md Hemayet Uddin ◽  
Sankar Bhattacharya

Automotive Shredder Residue (ASR), a waste when metals are mostly removed from end-of-life vehicles, has constituents similar to municipal solid waste (MSW) consisting of plastics, rubber, textiles, and some metals. The processing of ASR is a challenge due to its heterogeneous nature, making feeding to a reactor difficult. In this work, a new procedure of ASR pretreatment is proposed to bring particulate nature in the sample for easier feeding during pyrolysis. The thermal breakdown characteristics of the pretreated ASR solids under slow pyrolysis conditions were assessed in a thermogravimetric analyser following the International Confederation for Thermal Analysis and Calorimetry (ICTAC) kinetics committee recommendations. The effect of particle sizes and heating rates were studied at temperatures up to 800 °C at different heating rates of 2, 5, and 10 °C/min for three particle sizes, 38–63 µm, 63–90 µm, and 90–106 µm, and the kinetic data were derived. The volatiles emitted during pyrolysis were characterized by Diffuse Reflectance Infrared Spectroscopy (DRIFTS). We also developed an algorithm for the selection of heating rate during the pyrolysis of the pretreated ASR. The DRIFTS results, kinetic data, and heating rate for the selected particle sizes are useful for the development of a pyrolysis process for pretreated ASR.


2021 ◽  
Vol 39 (2) ◽  
pp. 493-502
Author(s):  
I Made Rajendra ◽  
I Nyoman Suprapta Winaya ◽  
Ainul Ghurri ◽  
I Ketut Gede Wirawan

The purpose of bed material in the pyrolysis process is to reduce the need for heat energy. In this study, three kinds of sands were observed as bed material, namely iron oxide, zeolite, and ZSM-5 in the slow fixed bed pyrolysis of sunan candlenut oilcake (SCO). To evaluate the activation energy, pyrolytic kinetics were carried out using the iso-conversional method with the KAS, OFW, and Friedman models. They involved calculating the data from the thermogravimetric analysis (TGA) test at heating rates of 5, 10, 20 and 40 K/min. Furthermore, the results showed that SCO had a high volatile content of 82.80%, alongside a calorific value of 26.93 MJ/kg. The calculation results showed that the activation energy of SCO was 169.140 kJ/mol which decreased 1.45% in the KAS model, and 1.92% in the OFW model with the addition of ZSM-5 bed material. Therefore, the use of ZSM-5 bed material in the pyrolysis process reduces the activation energy.


Sign in / Sign up

Export Citation Format

Share Document