scholarly journals Air Quality Effects of Pollutant Gases from Brick Kilns near Chennai

2019 ◽  
Vol 8 (3) ◽  
pp. 2284-2291

Brick kiln industries are commonly found in most of the regions in our country. Many private sectors consider this type of industry more as a business rather than giving importance to hygiene and health aspects. This work has focused on the air pollutants emitted from brick kiln industries near Chennai and its environmental effects. Majority of pollutants emitted were found to be oxides of nitrogen (NOx ), carbon dioxide (CO2 ) and oxides of sulphur (SOx ). Generally all these gases have adverse bad effects on the well health of human community. Workers in brick kiln industries are directly inhaling toxic pollutant gases and suffer with various health complexities. Sampling sites were chosen based on last five years historical data. Experimental survey was done in the chosen sampling sites to observe the severity of pollution around the place. Time bound study and observation was conducted to know the pollution effects in various months ranging from October 2018 to February 2019. Air Quality Index (AQI) was calculated and remedial measures were suggested.

2021 ◽  
Author(s):  
Dilshad Ahmed ◽  
Zafar Iqbal Shams ◽  
Moinuddin Ahmed ◽  
Muhammad Fahim Siddique

Abstract Despite being one of the most populated cities globally, the air quality of Karachi is hardly ever comprehended. The present paper investigates the outdoor concentrations of 10 air pollutants, viz. NO, NO2, NOx, SO2, CO, O3, CH4, methane carbon, non-methane hydrocarbons, and total hydrocarbons at three different city sites, viz., Sohrab Goth, Defense Housing Authority, and North Nazimabad. The results demonstrate that these pollutants severely affected the city's air quality. The annual mean concentrations of both NO2 and SO2 exceeded the WHO guidelines at some study sites. The city experiences varied concentrations of major air pollutants because three types of fuel, viz. diesel, gasoline, and compressed natural gas, operate the motor vehicles in this conurbation. The study also correlates the various air pollutants with each other and with various meteorological factors. All the three oxides of nitrogen are statistically associated at all three sites with one another, with SO2 at Defense Housing Authority, with CO at North Nazimabad, and with meteorological factors at Sohrab Goth and Defense Housing Authority. Carbon monoxide is statistically associated with the meteorological factors only at North Nazimabad. The study suggests that higher air pollution in the city is due to the adoption of lenient vehicular emission standards because stringent emission standards cannot be adopted due to the non-availability of low or zero sulfur fuel. Moreover, ineffective regulation of exiting standards also contributes to higher vehicular emissions in the city.


Author(s):  
Asif Hossain Abir

In Bangladesh, clay bricks are extensively used as building construction material. Rapid urbanization in the country has spurred the brick production of 8.6 billion each year. Larger part of brick fields have been set up illicitly, near human homes, schools, colleges, medicinal services offices, disregarding the current laws in this regard. Top soil of agricultural land is collected for producing bricks. As a result our country is losing hectares of precious topsoil each year. In Bangladesh, around 12,000 brick kilns are in operation. A kiln produces averagely 8,500 bricks using 1,000 cubic feet of topsoil. Tons of forest wood is burned to produce bricks every year. Brick kilns emissions consist of carbon-dioxide (CO2), particulate matter (PM) including black carbon (BC), sulphur-dioxide (SO2), oxides of nitrogen (NOx), and carbon monoxide (CO), thereby causing air pollution. Brick kilns around Dhaka are responsible for up to 58 percent of all the fine-particulate air pollution in the capital. Unabated growth and running of brick kilns reveals the fact that the law enforcement mechanism is not functioning properly. Housing and Building Research Institute (HBRI), has come up with various alternatives of bricks, rarely used in any private or public buildings. This study concentrates on the roles of existing laws to control brick manufacturing and kiln establishment in Bangladesh and also scope of Alternative Bricks (ABs) in Bangladesh.


2017 ◽  
Author(s):  
Thilina Jayarathne ◽  
Chelsea E. Stockwell ◽  
Prakash V. Bhave ◽  
Puppala S. Praveen ◽  
Chathurika M. Rathnayake ◽  
...  

Abstract. The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) characterized widespread and under-sampled combustion sources common to South Asia, including brick kilns, garbage burning, diesel and gasoline generators, diesel groundwater pumps, idling motorcycles, traditional and modern cooking stoves and fires, crop residue burning, and a heating fire. Fuel-based emission factors (EF; with units of pollutant mass emitted per kg of fuel combusted) were determined for fine particulate matter (PM2.5), organic carbon (OC), elemental carbon (EC), inorganic ions, trace metals, and organic species. For the forced draught zig-zag brick kiln, EFPM2.5 ranged 1–19 g kg−1 with major contributions from OC (7 %), sulfate expected to be in the form of sulfuric acid (31.9 %), and other chemicals not measured (e.g., particle bound water). For the clamp kiln, EFPM2.5 ranged 8–13 g kg−1, with major contributions from OC (63.2 %), sulfate (20.8 %), and ammonium (14.2 %). Our brick kiln EFPM2.5 values may exceed those previously reported, partly because we sampled emissions at ambient temperature after emission from the stack or kiln allowing some particle-phase OC and sulfate to form from gaseous precursors. The combustion of mixed household garbage under dry conditions had an EFPM2.5 of 7.4 ± 1.2 g kg−1, whereas damp conditions generated the highest EFPM2.5 of all combustion sources in this study, reaching up to 125 ± 23 g kg−1. Garbage burning emissions contained relatively high concentrations of polycyclic aromatic compounds (PAHs), triphenylbenzene, and heavy metals (Cu, Pb, Sb), making these useful markers of this source. A variety of cooking stoves and fires fueled with dung, hardwood, twigs, and/or other biofuels were studied. The use of dung for cooking and heating produced higher EFPM2.5 than other biofuel sources and consistently emitted more PM2.5 and OC than burning hardwood and/or twigs; this trend was consistent across traditional mud stoves, chimney stoves, and 3-stone cooking fires. The comparisons of different cooking stoves and cooking fires revealed the highest PM emissions from 3-stone cooking fires (7.6–73 g kg−1), followed by traditional mud stoves (5.3–19.7 g kg−1), mud stoves with a chimney for exhaust (3.0–6.8 g kg−1), rocket stoves (1.5–7.2 g kg−1), induced-draught stoves (1.2–5.7 g kg−1), and the bhuse chulo stove (3.2 g kg−1), while biogas had no detectable PM emissions. Idling motorcycle emissions were evaluated before and after routine servicing at a local shop, which decreased EFPM2.5 from 8.8 ± 1.3 g kg−1 to 0.71 ± 0.4 g kg−1 when averaged across five motorcycles. Organic species analysis indicated that this reduction in PM2.5 was largely due to a decrease in emission of motor oil, probably from the crankcase. The EF and chemical emissions profiles developed in this study may be used for source apportionment and to update regional emission inventories.


2021 ◽  
Vol 8 (1) ◽  
pp. 1947007
Author(s):  
Ebenezer Leke Odekanle ◽  
Chinchong Blessing Bakut ◽  
Abiodun Paul Olalekan ◽  
Roseline Oluwaseun Ogundokun ◽  
Charity O. Aremu ◽  
...  

Author(s):  
Jindong Wu ◽  
Jiantao Weng ◽  
Bing Xia ◽  
Yujie Zhao ◽  
Qiuji Song

High indoor air quality is crucial for the health of human beings. The purpose of this work is to analyze the synergistic effect of particulate matter 2.5 (PM2.5) and carbon dioxide (CO2) concentration on occupant satisfaction and work productivity. This study carried out a real-scale experiments in a meeting room with exposures of up to one hour. Indoor environment parameters, including air temperature, relative humidity, illuminance, and noise level, were controlled at a reasonable level. Twenty-nine young participants were participated in the experiments. Four mental tasks were conducted to quantitatively evaluate the work productivity of occupants and a questionnaire was used to access participants’ satisfaction. The Spearman correlation analysis and two-way analysis of variance were applied. It was found that the overall performance declined by 1% for every 10 μg/m3 increase in PM2.5 concentration. Moreover, for every 10% increase in dissatisfaction with air quality, productivity performance decreased by 1.1% or more. It should be noted that a high CO2 concentration (800 ppm) has a stronger negative effect on occupant satisfaction towards air quality than PM2.5 concentration in a non-ventilated room. In order to obtain optimal occupant satisfaction and work productivity, low concentrations of PM2.5 (<50 μg/m3) and CO2 (<700 ppm) are recommended.


Chemosphere ◽  
2021 ◽  
Vol 265 ◽  
pp. 129120
Author(s):  
Yuxuan Ying ◽  
Yunfeng Ma ◽  
Xiaodong Li ◽  
Xiaoqing Lin

2021 ◽  
Vol 13 (13) ◽  
pp. 7047
Author(s):  
Nu Yu ◽  
Yao Zhang ◽  
Mengya Zhang ◽  
Haifeng Li

Cabin air quality and thermal conditions have a direct impact on passenger and flight crew’s health and comfort. In this study, in-cabin thermal environment and particulate matter (PM) exposures were investigated in four China domestic flights. The mean and standard deviation of the in-cabin carbon dioxide (CO2) concentrations in two tested flights are 1440 ± 111 ppm. The measured maximum in-cabin carbon monoxide (CO) concentration is 1.2 ppm, which is under the US Occupational Safety and Health Administration (OSHA) permissible exposure limit of 10 ppm. The tested relative humidity ranges from 13.8% to 67.0% with an average of 31.7%. The cabin pressure change rates at the end of the climbing stages and the beginning of the descending stages are close to 10 hPa·min−1, which might induce the uncomfortable feeling of passengers and crew members. PM mass concentrations were measured on four flights. The results show that PM concentrations decreased after the aircraft cabin door closed and were affected by severe turbulences. The highest in-cabin PM concentrations were observed in the oldest aircraft with an age of 13.2 years, and the waiting phase in this aircraft generated the highest exposures.


Author(s):  
Zhiyuan Wang ◽  
Xiaoyi Shi ◽  
Chunhua Pan ◽  
Sisi Wang

Exploring the relationship between environmental air quality (EAQ) and climatic conditions on a large scale can help better understand the main distribution characteristics and the mechanisms of EAQ in China, which is significant for the implementation of policies of joint prevention and control of regional air pollution. In this study, we used the concentrations of six conventional air pollutants, i.e., carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), fine particulate matter (PM2.5), coarse particulate matter (PM10), and ozone (O3), derived from about 1300 monitoring sites in eastern China (EC) from January 2015 to December 2018. Exploiting the grading concentration limit (GB3095-2012) of various pollutants in China, we also calculated the monthly average air quality index (AQI) in EC. The results show that, generally, the EAQ has improved in all seasons in EC from 2015 to 2018. In particular, the concentrations of conventional air pollutants, such as CO, SO2, and NO2, have been decreasing year by year. However, the concentrations of particulate matter, such as PM2.5 and PM10, have changed little, and the O3 concentration increased from 2015 to 2018. Empirical mode decomposition (EOF) was used to analyze the major patterns of AQI in EC. The first mode (EOF1) was characterized by a uniform structure in AQI over EC. These phenomena are due to the precipitation variability associated with the East Asian summer monsoon (EASM), referred to as the “summer–winter” pattern. The second EOF mode (EOF2) showed that the AQI over EC is a north–south dipole pattern, which is bound by the Qinling Mountains and Huaihe River (about 35° N). The EOF2 is mainly caused by seasonal variations of the mixed concentration of PM2.5 and O3. Associated with EOF2, the Mongolia–Siberian High influences the AQI variation over northern EC by dominating the low-level winds (10 m and 850 hPa) in autumn and winter, and precipitation affects the AQI variation over southern EC in spring and summer.


2017 ◽  
Author(s):  
Jianlin Hu ◽  
Xun Li ◽  
Lin Huang ◽  
Qi Ying ◽  
Qiang Zhang ◽  
...  

Abstract. Accurate exposure estimates are required for health effects analyses of severe air pollution in China. Chemical transport models (CTMs) are widely used tools to provide detailed information of spatial distribution, chemical composition, particle size fractions, and source origins of pollutants. The accuracy of CTMs' predictions in China is largely affected by the uncertainties of public available emission inventories. The Community Multi-scale Air Quality model (CMAQ) with meteorological inputs from the Weather Research and Forecasting model (WRF) were used in this study to simulate air quality in China in 2013. Four sets of simulations were conducted with four different anthropogenic emission inventories, including the Multi-resolution Emission Inventory for China (MEIC), the Emission Inventory for China by School of Environment at Tsinghua University (SOE), the Emissions Database for Global Atmospheric Research (EDGAR), and the Regional Emission inventory in Asia version 2 (REAS2). Model performance was evaluated against available observation data from 422 sites in 60 cities across China. Model predictions of O3 and PM2.5 with the four inventories generally meet the criteria of model performance, but difference exists in different pollutants and different regions among the inventories. Ensemble predictions were calculated by linearly combining the results from different inventories under the constraint that sum of the squared errors between the ensemble results and the observations from all the cities was minimized. The ensemble annual concentrations show improved agreement with observations in most cities. The mean fractional bias (MFB) and mean fractional errors (MFE) of the ensemble predicted annual PM2.5 at the 60 cities are −0.11 and 0.24, respectively, which are better than the MFB (−0.25–−0.16) and MFE (0.26–0.31) of individual simulations. The ensemble annual 1-hour peak O3 (O3-1 h) concentrations are also improved, with mean normalized bias (MNB) of 0.03 and mean normalized errors (MNE) of 0.14, compared to MNB of 0.06–0.19 and MNE of 0.16–0.22 of the individual predictions. The ensemble predictions agree better with observations with daily, monthly, and annual averaging times in all regions of China for both PM2.5 and O3-1 h. The study demonstrates that ensemble predictions by combining predictions from individual emission inventories can improve the accuracy of predicted temporal and spatial distributions of air pollutants. This study is the first ensemble model study in China using multiple emission inventories and the results are publicly available for future health effects studies.


Sign in / Sign up

Export Citation Format

Share Document