scholarly journals Adsorption Kinetics and Equilibrium Isotherms Modeling of H2S on Hydrogel Biochar and Biochar Adsorbent from Rice Husk

2019 ◽  
Vol 8 (4) ◽  
pp. 6871-6878

Hydrogen sulphide is a poisonous gas that is commonly found in swamps and areas of high volcanic activities. Due to the dangers and hazards that it may impose such as neurological disorders and miscarriages, continuous innovative attempts to remove the gas are in place. A study was conducted to synthesize an adsorbent that is made from activated rice husk biochar and also hydrogel biochar. This study is complementary to that study where the adsorption processes using the two adsorbents are mathematically modelled. Three parameters were studied which were the adsorbent mass, the gas flow rate, and the gas temperature. It was found that for rice husk-based activated biochar, for all three parameters, the adsorption processes could be mathematically represented using Thomas Model and Yoon-Nelson Model. Meanwhile, for rice husk-based hydrogel biochar, the adsorption process could be mathematically represented using Thomas and Yoon-Nelson Model for the effect of mass of adsorbent, and Adam-Bohart for the effect of gas flow rate and gas temperature. Although the coefficient of determination (R2) suggested that Thomas and Yoon-Nelson Model are more appropriate to be used to model the latter two parameters, because the exit concentration reached the point when it was greater than half the inlet concentration well before 0-th second, the linearly regressed equation became mathematically inconsistent with the isotherm models. Kinetic studies were also done, and it was found that the adsorption processes using the activated biochar fit both pseudo-first and pseudo-second order equation. This means that the adsorption processes using the activated biochar are both physisorption and chemisorption. Meanwhile, the adsorption processes using the hydrogel biochar fit only the pseudo-second order equation, suggesting that the adsorption process is chemisorption.

Author(s):  
Nur Hidayatul Nazirah Kamarudin ◽  
Herma Dina Setiabudi ◽  
Aishah Abdul Jalil ◽  
Siti Hazirah Adam ◽  
Nur Fatien Muhamad Salleh

This study applied ultrasonic irradiation technique to remove acid orange 52 (AO52) and in the meantime utilizing the potential adsorbent, Lapindo volcanic mud (LVM). LVM was collected from the erupted mud in Sidoarjo, Indonesia and calcined prior the adsorption process. Previously in another study, Lapindo was proven to be efficient for adsorption of dyes in single adsorption method. In this study, the combination of adsorption with ultrasound, or as known as sono-sorption shows that the adsorptivity increased from 95.54 mg/g to 129.5 mg/g. The isotherm study shows that this process obeyed Langmuir isotherm model with adsorption capacity of 833.33 mg/g. The enhancement of sono-sorption method as compared to conventional method is believed to be resulted from the facilitated mass transfer driven by the ultrasound, along with the adsorption ability of LVM. The kinetic study fit to the pseudo second order equation. Copyright © 2019 BCREC Group. All rights reservedReceived: 1st October 2018; Revised: 22nd December 2018; Accepted: 7th January 2019; Available online: 25th January 2019; Published regularly: April 2019How to Cite: Kamarudin, N.H.N., Setiabudi, H.D., Jalil, A.A., Adam, S.H., Salleh, N.F.M. (2019). Utilization of Lapindo Volcanic Mud for Enhanced Sono-sorption Removal of Acid Orange 52. Bulletin of Chemical Reaction Engineering & Catalysis, 14 (1): 189-195 (doi:10.9767/bcrec.14.1.3326.189-195)Permalink/DOI: https://doi.org/10.9767/bcrec.14.1.3326.189-195  


2019 ◽  
Vol 54 (4) ◽  
pp. 290-298
Author(s):  
Muhammad Arsalan ◽  
Azka Awais ◽  
Tingting Chen ◽  
Qinglin Sheng ◽  
Jianbin Zheng

Abstract In this research, novel PANI/BN-based absorbent was prepared by bonding polyaniline and bentonite for water remediation and their structures were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The effect of pH, concentration of metal, and dosage amount on synthesized novel PANI/BN-based absorbent was investigated in detail. The result indicated that the PANI/BN-based absorbent has an excellent adsorption performance towards Cu, Pb, and Ni, and the highest binding capacity of 130 mg g−1 for Ni was obtained under normal conditions. The adsorption of PANI/BN absorbent was found to depend on pH when pH < 7.0, but the adsorption has been found independent from the ionic bond effect. The adsorption at optimum pH for Cu (pH 6) and Pb (pH 5) was observed as 85 mg g−1 and 105 mg g−1, respectively. The best results collected at those conditions of isotherm data and adsorption kinetics are represented by the Langmuir model and pseudo-second order equation, respectively. Thermodynamic results (ΔH > 0, ΔS > 0, ΔG < 0) showed that the adsorption process of Cu, Ni, and Pb is significantly increased by the synthesized novel PANI/BN-based absorbent.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Emmanuel Nyankson ◽  
Jonas Adjasoo ◽  
Johnson Kwame Efavi ◽  
Reuben Amedalor ◽  
Abu Yaya ◽  
...  

In this work, zeolite (Z) and Z-Fe3O4 nanocomposite (Z-Fe3O4 NC) have been synthesized. The Fe3O4 nanoparticles were synthesized using the extract from maize leaves and ferric and ferrous chloride salts and encapsulated into the zeolite framework. The nanocomposite (Z-Fe3O4 NC) was characterized using X-ray diffractometer (XRD), Fourier-transform infrared (FT-IR) spectroscopy, energy-dispersive X-ray (EDX) spectroscopy, and scanning electron microscopy (SEM). The potential of Z-Fe3O4 NC as an adsorbent for removing methylene blue molecules (MB) from solution was examined using UV-Vis and kinetic and equilibrium isotherm models. The adsorption data fitted best with the pseudo-second-order model and Weber and Morris model, indicating that the adsorption process was chemisorption, while the Weber and Morris described the rate-controlling steps. The intraparticle diffusion model suggests that the adsorption processes were pore and surface diffusion controlled. The Langmuir isotherm model best describes the adsorption process indicating homogeneous monolayer coverage of MB molecules onto the surface of the Z-Fe3O4 NC. The maximum Langmuir adsorption capacity was 2.57 mg/g at 25°C. The maximum adsorption efficiency was 97.5%. After regeneration, the maximum adsorption efficiency achieved at a pH of 7 was 82.6%.


Nafta-Gaz ◽  
2020 ◽  
Vol 76 (11) ◽  
pp. 828-836
Author(s):  
Adrian Dudek ◽  

Since 2016, Oil and Gas Institute – National Research Institute (INiG – PIB) has been conducting new research to determine the relationship between ambient temperature and gas temperature in industrial diaphragm gas meters during the measurement, and to develop new recommendations for billing systems using industrial diaphragm gas meters with a throughput of until 25 m3/h. In the first stage, work was carried out, in which the obtained test results confirmed that the heat exchange process in an industrial diaphragm gas meter depends on the ambient temperature, the gas temperature at the inlet to the gas meter, the flow rate of the gas flowing, as well as the casing surface and the gas volume of the gas meter. In the next stage, work was carried out to determine the relationship between ambient temperature and gas temperature at the industrial diaphragm gas meter connection during the measurement. The obtained results undermined the thesis, which indicated that the gas inlet temperature is equal to the gas temperature at the depth of the gas network. In the last stage, work was carried out to determine the course of changes in gas temperature in industrial diaphragm gas meters as a function of ambient temperature and cyclical changes of the gas flow rate, which were to reflect the work of gas meters installed at customers’ premises. The analysis of the obtained test results once again showed a strong dependence of the gas temperature inside industrial diaphragm gas meters on the ambient temperature, but also on the flow rate of gas. The obtained results of laboratory tests will be used to carry out a thermodynamic description of the heat exchange process in an industrial diaphragm gas meter, which would allow the determination of the gas billing temperature as a function of the ambient temperature, the temperature of the inflowing gas and the gas flow rate. The calculated gas temperature values could be used to determine the temperature correction factors applicable when settling gas consumers billed on the basis of measurement with the use of industrial diaphragm gas meters.


1996 ◽  
Vol 118 (1) ◽  
pp. 169-172 ◽  
Author(s):  
P. S. Ghoshdastidar ◽  
V. K. Anandan Unni

This paper presents a steady-state heat transfer model for a rotary kiln used for drying and preheating of wet solids with application to the non-reacting zone of a cement rotary kiln. A detailed parametric study indicates that the influence of the controlling parameters such as percent water content (with respect to dry solids), solids flow rate, gas flow rate, kiln inclination angle and the rotational speed of the kiln on the axial solids and gas temperature profiles and the total predicted kiln length is appreciable.


Author(s):  
Koustubh Sinhal ◽  
P. S. Ghoshdastidar ◽  
Bhaskar Dasgupta

The present work reports a computer simulation study of heat transfer in a rotary kiln used for drying and preheating food products such as fruits and vegetables with superheated steam at 1 bar. The heat transfer model includes radiation exchange among the superheated steam, refractory wall and the solid surface, conduction in the refractory wall, and the mass and energy balances of the steam and solids. Finite-difference techniques are used, and the steady state thermal conditions are assumed. The false transient approach is used to solve the wall conduction equation. The solution is initiated at the inlet of the kiln, and proceeds to the exit. The output data consist of distributions of the refractory wall temperature, solid temperature, steam temperature, and the total kiln length. The inlet of the kiln is the outlet of the gas (superheated steam), since the gas flow is countercurrent to the solid. Thus, for a fixed solid and gas temperature at the kiln inlet, the program predicts the inlet temperature of the gas (i.e. at the kiln exit) in order to achieve the specified exit temperature. In the absence of experimental results for food drying in a rotary kiln, the present model has been satisfactorily validated against numerical results of Sass [1] for drying of wet iron ore in a rotary kiln. The results are presented for drying of apple and carrot pieces. A detailed parametric study indicates that the influence of controlling parameters such as percent water content (with respect to dry solids), solids flow rate, gas flow rate, kiln inclination angle and the rotational speed of the kiln on the axial solids and gas temperature profiles and the total predicted kiln length is appreciable. The study reveals that a good design of a rotary kiln requires medium gas flow rate, small angle of inclination and low rotational speed of the kiln.


2013 ◽  
Vol 690-693 ◽  
pp. 438-441 ◽  
Author(s):  
Tao Feng ◽  
Lei Xu

The chitosan/rectorite composite was prepared and characterized by XRD. The interlayer distance of rectorite was enlarged from 2.53 nm to 3.01 nm. Congo red (CR) was selected as a model anionic dye and the adsorption tests of CR onto chitosan/rectorite composite were carried out. The results showed that the CR adsorption process is dependent on pH and initial CR concentration and temperature. The maximal CR uptake by chitosan/rectorite composite was 73.8 mg g-1 in the test. Adsorption kinetics studies indicated that the sorption processes were better fitted by pseudo-second order equation.


2012 ◽  
Vol 16 (5) ◽  
pp. 1506-1509 ◽  
Author(s):  
Ying Mei ◽  
Xiao-Hua Yang ◽  
Ya-Nan Guo ◽  
Jun He ◽  
Rong Jiang ◽  
...  

The objective of this study is to explore the mechanism of phosphorus adsorption in the bioretention media. The phosphorus adsorption characteristics of four media of bioretention are studied by four isothermal adsorption experiments. The result indicate that the maximal adsorption capacity (qm) of phosphorus of the four bioretention media are found to be media I (0.3365 mg/g), media II (0.3302 mg/g), media III (0.2751 mg/g) and media IV 0.8435 mg/g), respectively. The negative values of Gibbs free energy of phosphorus indicate that each of the phosphorus adsorption process by the four bioretention media is a spontaneous process. The mean sorption energies obtained from DR isotherm were 0.0758, 0.0772, 0.0803 and 0.0632 kJ/mol respectively, which indicate the physical nature of the adsorbate/adsorbent interactions. Two kinetic models including pseudo first-order and pseudo second-order equation were selected to follow the adsorption process. The results showed that the adsorption of phosphorus with the four types of bioretention media could be described by the pseudo second-order equation. The media IV was the better media of bioretention with high phosphorus removal capacity.


2013 ◽  
Vol 14 (2) ◽  
pp. 321-328 ◽  
Author(s):  
Wenjian Shi ◽  
Haixin Gu ◽  
Xuan Chen ◽  
Yuanxing Huang ◽  
Wei Wu ◽  
...  

Etherifying agent, 3-chloro-2-hydroxypropyl trimethylammonium chloride (CHPTA) was modified by grafting on cellulose to make quaternary ammonium cationic cellulose (QACC) with 2.01% nitrogen content and a degree of substitution of 0.289. The experiment results showed that at 318 K, the adsorption capacities of QACC on monochloroacetic acid (MCAA), dichloroacetic acid and trichloroacetic acid (TCAA) were 1.80, 1.87 and 2.01 mmol/g, respectively. The adsorption process could be modeled by pseudo second-order kinetics very well. The adsorption rate constant increased with temperature, and the adsorption pattern fitted Langmuir isotherms, which was monomolecular layer absorption. ΔH of the three chlorinated acetic acids were all above zero, and ΔS of them were above zero too. At 298 K, ΔG of the adsorption processes were below zero. These experiment results showed that it was main chemical adsorption accompanied by physical adsorption.


2018 ◽  
Vol 15 (1) ◽  
pp. 81-86 ◽  
Author(s):  
Baghdad Science Journal

In this paper, a construction microwave induced plasma jet(MIPJ) system was used to produce a non-thermal plasma jet at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power of 800 W. The working gas Argon (Ar) was supplied to flow through the torch with adjustable flow rate using flow meter regulator. The influence of the MIPJ parameters such as applied voltage and argon gas flow rate on macroscopic microwave plasma parameters were studied. The macroscopic parameters results show increasing of microwave plasma jet length with increasing of applied voltage, argon gas flow rate where the plasma jet length exceed 12 cm as maximum value. While the increasing of argon gas flow rate will cause increasing into the argon gas temperature, where argon gas temperature the exceed 350 ? as maximum value and study the effect of gas flow rate on the optical properties


Sign in / Sign up

Export Citation Format

Share Document