scholarly journals Performance of Polymer Concrete Seeded with Steel Fibres and Stone Powder

2019 ◽  
Vol 8 (4) ◽  
pp. 9844-9847

This paper presents the fiber effect in the polymer concrete. The concrete is prepared with 10% Bethemcharla stone powder as replacement to cement and 10% of Bisphenol-A polymer to the concrete mixes. The fibers were incorporated to the concrete in the proportion of 0,1 and 2% by volume of specimen. The study mainly focused to evaluate compressive, split, shear and flexural strengths of concrete. Tests conducted on cube, cylinder and beam specimens and from the results it is found that, the fiber seeding to mixes enhances the strength properties. In addition to the mixes, plan cement concrete mix without stone powder and polymer is prepared and tested for the same strengths, this mix is considered as reference mix for comparison purpose. For present experimental work few mathematical models are established to assess strengths in association of cube compressive strength.

2019 ◽  
Vol 11 (2) ◽  
pp. 189-203 ◽  
Author(s):  
Ola Bakr Shalby ◽  
Hala Mohamed Elkady ◽  
Elsayed Abdel Raouf Nasr ◽  
Mohamed Kohail

Purpose Nano-Clay (NC) is reported as a candidate partial replacement for cement, due to its abundance and relatively low cost - beside reported promotion of different concrete properties. On the other hand, Steel Fibres (SF) has proven to have a positive effect on post fire exposure residual strength of concrete. This paper aims to present the outcomes of a comprehensive research program assessing a hybrid mix between NC and SF in concrete mixtures (NCSF-CRETE). Design/methodology/approach Physical chemical and physical characterization of NC is performed using different tools as XRF spectrometer, and TEM micrograph. Fresh concrete properties of NSCF-CRETE as slump and air content are investigated. Enhancement in permeability using NSCF is verified by comparing its resistance to the penetration of chlorides resistance with regular concrete mix. Besides, the proposed NCSF-CRETE compressive strength is evaluated compared to mixes with NC and SF each used separately at different curing ages. Besides, NSCF and compared mixes are exposed to an indirect fire testing program – two hours exposure – for: 300, 450 and 600°C. Degradation in compressive strength was investigated after exposure to different temperatures and percentage of residual strength is reported. Findings Results indicated an improved performance of NCSF -CRETE of about 40% compared to regular concrete in compressive strength at normal conditions. This improvement extended to its behavior when subjected to indirect fire exposure NSCF also maintained 40% more strength than the residual in regular concrete mix – which suffered severe damage – after 2 h exposure to 600°C. Originality/value Using NCSF-Crete allows retrofitting the structure after exposure to such drastic conditions.


Author(s):  
Shakir Hussain

Abstract: Polymer waste volumes have surged in recent years as a result of growing industrialization and fast improvements in living standards. In Malaysia, the majority of polymer waste is discarded rather than recycled. This circumstance results in major issues such as waste of natural resources and pollution of the environment. Polymer products, such as synthetic fibres, plastics, and rubber, are petrochemical compounds that disintegrate slowly in nature. Even after a long amount of time, plastic materials are not easily biodegradable. In reality, a wide range of waste materials can be used as a cement matrix inert. For the manufacture of the polymer concrete, trash bag plastics were employed as polymer wastes HDPE in this study (PC). The purpose of this research is to investigate the characteristics and characterisation of polymer HDPE as a coarse aggregate replacement in concrete. Temperatures of 160°C, 170°C, 180°C, 190°C, and 200°C were used in the heating procedure. By volumetric approach, five compositions of coarse aggregate with varied crushed stone: HDPE waste ratios of 0:100, 15:85, 30:70, 45:55, and 60:40 were utilised. The use of polymerwaste as coarse aggregate in traditional concrete was examined. With fresh and hardened concrete tests, the effects of polymer wastes on the workability and strength of the concrete were investigated. After 28 days, the compressive strength of the PCwas determined to be suitable for nonstructural use. The findings of the cost research revealed that the PC is more cost effective than traditional concrete. Keywords: Polymer Wastes HDPE; Coarse Aggregate; Compressive Strength; Properties


Author(s):  
N. Sharma ◽  
M. Singh Thakur ◽  
P.L. Goel ◽  
P. Sihag

Purpose: Over the years, various experiments have been performed to investigate the impact of marble powder within the concrete mixture. In the present study, a review has been done to check the persistence of marble dirt as the substitute for concrete constituents. Design/methodology/approach: Furthermore, the impact of marble powder as a replacement of cement and aggregates were reviewed. By reviewing previous studies, the result indicates that the use of waste marble powder in cement and aggregate was adequate to a certain range. Findings: By replacing cement with marble powder in a range between 5% to 10% by weight, it increases the compressive strength of concrete mix by 11.30% to 24.56%, compared to the nominal mix. According to the study, any further increase in the amount of marble powder in place of cement i.e, 12.5% to 20% replacement by weight, results in the reduction of compressive strength of concrete mix by 7.5% to 26.01%. Replacement of aggregates from 5% to 75% with marble powder increases the compressive strength of about 3.22% to 23.91% as compared to the nominal mix. Research limitations/implications: It was also concluded from the current study that, to obtain higher compressive strength, it is advantageous to replace fine aggregates with marble powder than the replacement of cement with the marble powder.


2015 ◽  
Vol 1129 ◽  
pp. 123-130 ◽  
Author(s):  
Tomasz Piotrowski ◽  
Piotr Gawroński

One of the main advantage of Concrete-Polymer Composites (C-PC) in relation to Cement Concrete called Ordinary Concrete is its chemical resistance. There is no European standard for testing the chemical resistance of cement based concretes and C-PC. American standards ASTM provide varied concrete tests depending on exposure conditions and mechanisms of destruction of concrete structures but there is a lack of clear criteria for the evaluation of research results by these methods. There are also requirements for monolithic floors chemical resistance - ASTM C722-04 and the requirements of the standard EN 1504-2, but they involve coating materials and cannot be directly applied to the cement concrete and C-PC. The paper presents the experimental studies of chemical resistance of C-PC in relation to OC. The investigations has been made under different environment conditions. First the samples of Ordinary Concrete (OC), Polymer Concrete (PC-1) based on vinylester resin and Polymer-Cement Concrete (PCC-1) with polyacrylic dispersion used as a co-binder were immersed for a period of time up to 168 days in a distilled water, H2SO4, MgSO4, (NH4)2SO4 and mix of the mentioned. During the storage the pH was controlled. Additionally as a reference the samples were conditioned in a climate chamber (20°C, 60% RH). The compressive strength were tested after defined periods of time. Next experiment was performed on OC and three different PCC – first modified with synthetic latex, second with polyacrylic polymer dispersion and the last with epoxy resin. The samples were immersed in H2SO4 up to 90 days. Compressive strength and mass loss after 30 and 90 days of conditioning were measured. As a reference the water immersion was used. The results obtained in this experimental program showed high chemical resistance of Polymer Concrete. PC samples obtained continuous increases of compressive strength in all examined chemically aggressive environments. It is also confirmed higher chemical resistance of Polymer-Cement Concrete modified with vinylester resin in relation to Ordinary Concrete. The second part of the program showed that the best additive to PCC among poliacrylic dispersion, synthetic latex and epoxy resin was last one. Epoxy modified PCC samples obtained best results both in compressive strength and mass loss tests


2013 ◽  
Vol 687 ◽  
pp. 520-526 ◽  
Author(s):  
Joanna Julia Sokołowska ◽  
Tomasz Piotrowski ◽  
Andrzej Garbacz ◽  
Paweł Kowalik

The subject of this paper is the evaluation of possibility of using the plastic waste fillers as the coarse aggregate of two Concrete-Polymer Composites (C-PC): polymer-cement concrete (PCC) and polymer concrete (PC). The applied fillers were crushed high density polypropylene (HDPP) wastes remaining after grinding plastic elements used in mountings and thermal insulation systems. The substitution of natural mineral coarse aggregate (river gravel) with plastic material was done on the various levels (0 ÷ 40% in case of PCC and 0 ÷ 100% in case of PC). For all composites the density, flexural strength and compressive strength were determined and compared with those for reference composites containing only the river gravel. The results enabled to indicate the levels of possible substitution of the natural aggregate, the non-renewable resource, with waste material, so that the properties of C-PC remain at the satisfactory level.


2020 ◽  
Author(s):  
Muhammad Imran Khan ◽  
Muslich Hartadi Sutanto ◽  
Madzlan Bin Napiah ◽  
Salah E. Zoorob

This chapter describes a review of the design and formulation of various cementitious grouts for semi-flexible pavement surfaces. Additionally, the authors also conducted extensive experimental work on the possibility of using a most effective and innovative way of recycling waste polyethylene terephthalate (PET) by exposing to gamma radiation and using as a replacement of Ordinary portland cement in the formulation of cement grouts for semi-flexible pavement surfaces. In the current study, cement in the grouts was replaced with PET (regular and irradiated), fly ash and silica fume and was evaluated for flowability and strength properties. The study concludes that normal PET causes a significant reduction in compressive strength, however, some of the strength is restored when irradiated PET was used. The recycling of waste PET, as a cement replacement in the cementitious grouts for semi-flexible pavement surfaces, with the irradiation process can be doubled as compared to utilizing normal/regular PET.


2021 ◽  
Vol 1 (3) ◽  
pp. 11-15
Author(s):  
Michael Tiza

The physical, chemical, and mechanical characteristics of concrete change with heat-fire. The effect of thermal load on Slag cement concrete output must be measured because of the crucial role of thermal resistance in concrete structure performance and operation. This work examines the thermal resistance of Slag cement concrete. The concrete cubes were produced and cured for 28 days and then subjected to varying temperatures range of 100°C, 150°C, 200°C, 250°C, and 300°C. Hardness and compressive strength were measured at 30, 45, and 60 minutes; the sample results were compared to those of ordinary Portland cement used for the study. The findings of this experiment demonstrate that strength loss was 0.45% at 100 °C, 1.75% at 150 °C, 2.67% at 200°C, 5.98% at 250°C and 12.04 % at 300 °C, the hardness property increased from 100° to 150°C but decreased with higher temperatures. However, average concrete loss at 300 °C exceeds 20 percent of its compressive strength. This means that higher temperatures have adverse effects on concrete strength. From the test, however, it has been noted that there was an insignificant loss of strength of concrete at temperatures below 250°C and however, above 250 °C, a significant loss of concrete strength was observed. The results indicate that slag concrete has a significantly higher thermal resistance potential than traditional concrete and can be used even in industrial applications.


2011 ◽  
Vol 147 ◽  
pp. 37-41 ◽  
Author(s):  
Ezahtul Shahreen Ab Wahab ◽  
Siti Fatimah Che Osmi

This investigation was carried out to look the possibility of using chicken rachis as reinforcement in concrete mix. In this study, two different percentage of rachis from chicken feather were added to plain concrete comprises of 1% and 2% from the total weight of cement. Concrete with grade 30 were formed by using chicken rachis as additive material. Selected mechanical test were performed and the results were analysed. The mechanical tests included compressive strength, and splitting tensile strength. Comparison was made of these values and those of control specimen (without chicken rachis). The results showed an increment on strength for all mechanical tests done using concrete added with 1% chicken rachis compared to 2% chicken rachis added and those control specimens.


2019 ◽  
Vol 289 ◽  
pp. 02003
Author(s):  
Nader Ghafoori ◽  
Matthew O. Maler ◽  
Meysam Najimi ◽  
Ariful Hasnat

This study examines the suitability of ASTM Type V cement concrete for rapid repair applications. To this end, experimental results on transport and durability properties of high early-strength concretes using ASTM Type V cement were compared with those of a more traditional cement used for rapid repair, i.e. Type III cement. A cement content of 445 kg/m3 (750 lb/yd3) was maintained for all studied concretes. The experimental program included compressive strength, absorption, rapid chloride migration, corrosion resistance, and mass loss due to freezing and thawing regimes. The results of this study revealed that use of Type III and V cements were both effective for concrete rapid repair applications. The opening time to reach the minimum compressive strength of 21 MPa (3000 psi) was found dissimilar. Type III cement concrete showed better strength properties at early ages due to its high fineness. However, as curing age was extended to 24 hours and 28 days, Type V cement concrete produced higher strength results. Moreover, Type III cement concretes failed to display better performance in transport properties, corrosion, and frost resistance when compared to that of the studied Type V cement concretes.


2021 ◽  
Vol 3 (1) ◽  
pp. 1-5
Author(s):  
Saad Issa Sarsam

Prediction of the strength properties of roller compacted concrete from mathematical models is significant for rapid decision of the quality of the pavement. In the present assessment, roller compacted concrete slab samples have been prepared in the laboratory using 12 percentage of Portland cement by weight of aggregates. Cube, core, and beam specimens were extracted from the slab samples and tested for compressive, indirect tensile, and flexural strength at the age of 28 days. Strength test results were corelated among each other and mathematical models were obtained. It was observed that low significance of aggregates gradation type on the compressive and tensile strength exists. However, high influence of dense gradation on flexural strength could be detected. The flexural strength of dense graded mixture is higher than that of gap graded mixtures. The compressive strength of gap graded mixture is higher than that of dense graded mixture. It can be concluded that the flexural strength is higher than the tensile strength by (2.17 and 1.24) folds for dense and gap graded mixtures respectively. The compressive strength is higher than tensile strength by (5.72 and 4.87) folds for dense and gap graded mixtures respectively. The compressive strength is higher than the flexural strength by (3.4 and 2.49) folds for dense and gap graded roller compacted concrete respectively. The obtained mathematical models exhibit high coefficient of determination and may be implemented in verification of the specific strength property based on other measured strength properties of roller compacted concrete.


Sign in / Sign up

Export Citation Format

Share Document