scholarly journals Physicochemical and Microbiological Water Quality Assessment of Aba Waterside River, Aba, Nigeria

Author(s):  
L. O. Bobor ◽  
C. M. Umeh

The indiscriminate disposal of industrial effluents and solid wastes in surface water bodies is detrimental to humans and aquatic organisms. Water quality monitoring is critical to identify pollutants of concern and develop effective management strategies. Hence, this study was conducted to assess the impact of waste disposal on the water quality of Aba Waterside River, Ogbor hill, Aba. Grab samples were collected upstream, midstream and downstream and some physicochemical and microbiological parameters were analyzed in accordance with standard methods for the analysis of water and wastewater. The results were compared with the Nigerian standard for drinking water quality and the national environmental effluent limitation regulations. Turbidity levels (10 -31mg/l) exceeded the maximum permissible levels for drinking water (5mg/l) and may be associated with higher levels of embedded disease-causing microbes and potentially harmful organic and inorganic substances. The biological oxygen demand midstream (1960mg/l) was remarkably high due to the effluent discharged from the abattoirs at that point. Fecal coliforms (3-198MPN/100ml) were detected in all samples, indicating the presence of other potentially harmful microorganisms. The findings of this study indicate that the water is unsuitable for direct drinking water purposes and stringent water quality control measures should be implemented.

Author(s):  
Srimanti Duttagupta ◽  
Soumendra N. Bhanja ◽  
Avishek Dutta ◽  
Soumyajit Sarkar ◽  
Madhumita Chakraborty ◽  
...  

The 2020 COVID-19 pandemic has not only resulted in immense loss of human life, but it also rampaged across the global economy and socio-cultural structure. Worldwide, countries imposed stringent mass quarantine and lockdowns to curb the transmission of the pathogen. While the efficacy of such lockdown is debatable, several reports suggest that the reduced human activities provided an inadvertent benefit by briefly improving air and water quality. India observed a 68-days long, nation-wide, stringent lockdown between 24 March and 31 May 2020. Here, we delineate the impact of the lockdown on groundwater and river sourced drinking water sustainability in the arsenic polluted Ganges river basin of India, which is regarded as one of the largest and most polluted river basins in the world. Using groundwater arsenic measurements from drinking water wells and water quality data from river monitoring stations, we have studied ~700 km stretches of the middle and lower reaches of the As (arsenic)-polluted parts of the river for pre-lockdown (January–March 2020), syn-lockdown (April–May), and post-lockdown periods (June–July). We provide the extent of As pollution-free groundwater vis-à-vis river water and examine alleviation from lockdown as an opportunity for sustainable drinking water sources. The overall decrease of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) concentrations and increase of pH suggests a general improvement in Ganges water quality during the lockdown in contrast to pre-and-post lockdown periods, potentially caused by reduced effluent. We also demonstrate that land use (agricultural/industrial) and land cover (urban-periurban/rural) in the vicinity of the river reaches seems to have a strong influence on river pollutants. The observations provide a cautious optimistic scenario for potentially developing sustainable drinking water sources in the arsenic-affected Ganges river basin in the future by using these observations as the basis of proper scientifically prudent, spatially adaptive strategies, and technological interventions.


2018 ◽  
Vol 175 ◽  
pp. 03024
Author(s):  
Chen-Yao Ma ◽  
Yi-Chu Huang ◽  
Chih-Ming Kao

This study adopted the water quality model [Water Quality Analysis Simulation Program (WASP)] to simulate and evaluate the impacts of the opening and closure of an interception system at the tributary of Love River on mainstream water quality. The gates were opened respectively for 4, 12, and 24 hours to assess the impact on biochemical oxygen demand (BOD) and ammonia nitrogen (NH3-N) in the water bodies of Love River. The WASP model was used to evaluate the self-purification capacity of the river. According to the results of the model estimation, it takes 5 days for NH3-N and BOD in the water bodies of Love River to return to normal and for the water to restore its original water quality after the closure of the Baozhu Ditch gate. Results of this study can be used as a reference for Love River watershed management, and the WASP modeling can be applied for decision makers to develop appropriate management strategies of the interception system.


Author(s):  
Clarissa Perez Faria ◽  
Ricardo Almendra ◽  
Gisele Silva Dias ◽  
Paula Santana ◽  
Maria do Céu Sousa ◽  
...  

Abstract The present work evaluated the surveillance of the drinking water quality information system database and correlated the findings of the microbiological analysis with the distribution of intestinal protozoa from the metropolitan region of Rio de Janeiro. From the database, we obtained 1,654 georeferenced monitoring stations that were used in the analysis. The results indicate that the minimum number of samples collected per parameter (free residual chlorine, turbidity, counts of total and fecal coliforms (Escherichia coli)) was not fulfilled, the collection of samples throughout the year was irregular and the representability of sampling points considered strategic was low (48% of municipalities). Besides, municipalities with a high prevalence for intestinal parasite protozoa were also the ones that had the highest counts for coliforms and the reverse can also be observed, indicating a transmission through contaminated drinking water. Despite the increased participation of municipalities in water surveillance actions during the studied period, it is necessary to implement managerial measures to improve the system, aiming to correct flaws and inconsistencies in the application of the water quality monitoring protocol.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 457
Author(s):  
Raju Sekar ◽  
Xin Jin ◽  
Shuang Liu ◽  
Jing Lu ◽  
Jianwei Shen ◽  
...  

Freshwaters in China are affected by point and non-point sources of pollution. The Wujiang District (Suzhou City, China) has a long history of canals, rivers, and lakes that are currently facing various water quality issues. In this study, the water quality of four rivers and a lake in Wujiang was assessed to quantify pollution and explore its causes. Seventy-five monthly samples were collected from these water bodies (five locations/samples per area) from August to October 2020 and were compared with nine control samples collected from a water protection area. Fifteen physicochemical, microbiological, and molecular–microbiological parameters were analyzed, including nutrients, total and fecal coliforms, and fecal markers. Significant monthly variation was observed for most parameters at all areas. Total phosphorus, phosphates, total nitrogen, ammonium–nitrogen, and fecal coliforms mostly exceeded the acceptable limits set by the Chinese Ministry of Environmental Protection. The LiPuDang Lake and the WuFangGang River were the most degraded areas. The studied parameters were correlated with urban, agricultural, industrial, and other major land use patterns. The results suggest that fecal contamination and nutrients, associated with certain land use practices, are the primary pollution factors in the Wujiang District. Detailed water quality monitoring and targeted management strategies are necessary to control pollution in Wujiang’s watersheds.


Author(s):  
Yu.A. Novikova ◽  
I.O. Myasnikov ◽  
A.A. Kovshov ◽  
N.A. Tikhonova ◽  
N.S. Bashketova

Summary. Introduction: Drinking water is one of the most important environmental factors sustaining life and determining human health. The goal of the Russian Federal Clean Water Project is to improve drinking water quality through upgrading of water treatment and supply systems using advanced technologies, including those developed by the military-industrial complex. The most informative and reliable sources of information for assessing drinking water quality are the results of systematic laboratory testing obtained within the framework of socio-hygienic monitoring (SGM) and production control carried out by water supply organizations. The objective of our study was to formulate approaches to organizing quality monitoring programs for centralized cold water supply systems. Materials and methods: We reviewed programs and results of drinking water quality laboratory tests performed by Rospotrebnadzor bodies and institutions within the framework of SGM in 2017–2018. Results: We established that drinking water quality monitoring in the constituent entities of the Russian Federation differs significantly in the number of monitoring points (566 in the Krasnoyarsk Krai vs 10 in Sevastopol) and measured indicators, especially sanitary and chemical ones (53 inorganic and organic substances in the Kemerovo Region vs one indicator in the Amur Region). Discussion: For a more complete and objective assessment of drinking water quality in centralized cold water supply systems, monitoring points should be organized at all stages of water supply with account for the coverage of the maximum number of people supplied with water from a particular network. Thus, the number of points in the distribution network should depend, inter alia, on the size of population served. In urban settlements with up to 10,000 inhabitants, for example, at least 4 points should be organized while in the cities with more than 3,000,000 inhabitants at least 80 points are necessary. We developed minimum mandatory lists of indicators and approaches to selecting priority indices to be monitored at all stages of drinking water supply.


1998 ◽  
Vol 38 (10) ◽  
pp. 23-30
Author(s):  
Sarah Jubb ◽  
Philip Hulme ◽  
Ian Guymer ◽  
John Martin

This paper describes a preliminary investigation that identified factors important in the prediction of river water quality, especially regarding dissolved oxygen (DO) concentration. Intermittent discharges from combined sewer overflows (CSOs) within the sewerage, and overflows at water reclamation works (WRW) cause dynamic conditions with respect to both river hydraulics and water quality. The impact of such discharges has been investigated under both wet and dry weather flow conditions. Data collected from the River Maun, UK, has shown that an immediate, transient oxygen demand exists downstream of an outfall during storm conditions. The presence of a delayed oxygen demand has also been identified. With regard to modelling, initial investigations used a simplified channel and the Streeter-Phelps (1925) dissolved oxygen sag curve equation. Later, a model taking into account hydrodynamic, transport and dispersion processes was used. This suggested that processes other than water phase degradation of organic matter significantly affect the dissolved oxygen concentration downstream of the location of an intermittent discharge. It is proposed that the dynamic rate of reaeration and the sediment oxygen demand should be the focus of further investigation.


Agriculture ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 86
Author(s):  
Regina Böger ◽  
Karl Rohn ◽  
Nicole Kemper ◽  
Jochen Schulz

Poor drinking water quality can affect pigs’ health and performance. The disinfection of water may enhance microbial water quality. In this study, bacteria and endotoxins in sodium hypochlorite-treated and -untreated water from one pig nursery were analyzed. Water samples were taken from incoming water and from compartments with treated and untreated water at the beginning and end of pipes and from nipples. The farm was visited 14 times to measure total bacteria counts and concentrations of Pseudomonas spp. and endotoxins. Additionally, the occurrence of coliform bacteria was analyzed. A mixed model analysis revealed significant reductions in total bacteria counts and Pseudomonas spp. in treated water at the beginning of pipes and at nipple drinkers. The differences between bacteria concentrations at the end of pipes had no clear trend. Endotoxin concentrations were approximately equal at the beginning of pipes and at nipple drinkers but were found to have differences at the end of pipes. The occurrence of coliform bacteria was significantly reduced in treated water. The application of sodium hypochlorite can significantly reduce bacteria in water pipes. Endotoxin concentrations were mostly unaffected by water treatment. Disinfection of the dead-end pipe sections failed, and thus these parts should be regarded as potential contamination sources.


2011 ◽  
Vol 101 (3) ◽  
pp. 448-453 ◽  
Author(s):  
Joshua Graff Zivin ◽  
Matthew Neidell ◽  
Wolfram Schlenker

We examine the impact of poor water quality on avoidance behavior by estimating the change in bottled water purchases in response to drinking water violations. Using data from a national grocery chain matched with water quality violations, we find an increase in bottled water sales of 22 percent from violations due to microorganisms and 17 percent from violations due to elements and chemicals. Back-of-the envelope calculations yield costs of avoidance behavior at roughly $60 million for all nationwide violations in 2005, which likely reflects a significant understatement of the total willingness to pay to eliminate violations.


2004 ◽  
Vol 8 (3) ◽  
pp. 503-520 ◽  
Author(s):  
C. Neal ◽  
B. Reynolds ◽  
M. Neal ◽  
H. Wickham ◽  
L. Hill ◽  
...  

Abstract. Results for long term water quality monitoring are described for the headwaters of the principal headwater stream of the River Severn, the Afon Hafren. The results are linked to within-catchment information to describe the influence of conifer harvesting on stream and shallow groundwater quality. A 19-year record of water quality data for the Hafren (a partially spruce forested catchment with podzolic soil) shows the classic patterns of hydrochemical change in relation to concentration and flow responses for upland forested systems. Progressive felling of almost two-thirds of the forest over the period of study resulted in little impact from harvesting and replanting in relation to stream water quality. However, at the local scale, a six years’ study of felling indicated significant release of nitrate into both surface and groundwater; this persisted for two or three years before declining. The study has shown two important features. Firstly, phased felling has led to minimal impacts on stream water. This contrasts with the results of an experimental clear fell for the adjacent catchment of the Afon Hore where a distinct water quality deterioration was observed for a few years. Secondly, there are localised zones with varying hydrology that link to groundwater sources with fracture flow properties. This variability makes extrapolation to the catchment scale difficult without very extensive monitoring. The implications of these findings are discussed in relation to strong support for the use of phased felling-based management of catchments and the complexities of within catchment processes. Keywords: deforestation, water quality, acidification, pH, nitrate, alkalinity, ANC, aluminium, dissolved organic carbon, Plynlimon, forest, spruce, Afon Hafren, podzol


Sign in / Sign up

Export Citation Format

Share Document