scholarly journals Uji Keausan Besi Cor Berlapis Hardchrome Menggunakan Tribotester Pin-On-Disc

2021 ◽  
Vol 17 (2) ◽  
pp. 144
Author(s):  
Wahyu Anuwar Witoyo
Keyword(s):  

Besi cor memiliki rasio kekuatan terhadap massa yang paling tinggi. sehingga banyak digunakan sebagai bahan komponen mesin, misalkan gesekan yang terjadi pada ring piston dengan bore cylinder yang merupakan komponen drive train dari sistem motor bakar. Akibat dari kerja komponen tersebut maka akan timbul adanya keausan permukaan komponen. Tujuan penelitian ini adalah untuk mengetahui fenomena keausan besi cor dengan perlakuan permukaan electroplating hardchrome dengan menggunakan metode pengujian pin on disk tribometer, yang dilakukan dengan pelumasan SAE 10w-30 pada pembebanan 10N dan 20N dengan kecepatan putaran 60rpm dan jarak 200m, 300m, 400m, 500m, 600m setiap jarak dilakukan pengukuran keausan pada spesimen pin dan disc. Hasil pengujian keausan pada spesimen yang terbuat dari material besi cor dan dilapisi hardchrome dengan menggunakan pelumas SAE 10W-30 memperoleh kesimpulan bahwa setiap jarak keausan pada disk meningkat, Perhitungan keausan dengan menggunakan metode Archard yang menunjukkan tinggi keausan tertinggi sebesar 0.016729 mm pada jarak 600m di disc A beban 10N dan terendah sebesar 0.003035 mm pada jarak 200 m di disc B beban 10n. Nilai volume keausan terbesar pada disc B beban 20N berkisar 1.1741mm³ pada jarak 600 m. Serta volume keausan terendah pada disc A sebesar 0.2720 mm³ pada jarak 200 m dengan jenis keausan yang terjadi adalah keausan abrasi.

Author(s):  
Mark Chong Wai Lup ◽  
Sujeet K. Sinha ◽  
Seh Chun Lim

This paper aims to model abrasive wear for polymers using intersecting scratching technique. Scratch test and pin-on-disc test were conducted on five different polymers. Wear debris generated by intersecting scratching test was compared and correlated with the specific wear rates of the same polymers in a pin-on-disk test using ground steel surface as the counterface. It is the purpose of this paper to establish that an intersecting scratching test can be used as a means to qualitatively and quantitatively characterize wear performance of polymers.


An investigational analysis was conducted to study the effect of basalt/curaua hybrid composite focusing on wear properties. The hybrid composites are fabricated by resin transfer molding and the tests are conducted by pin on disk as per ASTM G99. Basalt/Curaua relative fiber weight percentage as 0/100,40/60, 60/40, 100/0 are fabricated and analyzed for abrasion wear resistance. Specimens are tested for the load of 50N at 1 m/s using Pin on Disc wear testing machine by varying abrading distance. Worn out surfaces of the abraded composites are studied by using scanning electron microscopy (SEM) and Fourier- transform infrared spectroscopy (FTIR). Roughness of the worn and pure surfaces is also accounted to measure significance of hybridization on tribological properties of the hybrid composites. Result shows that coefficient of friction is increasing in higher the curaua fiber in hybrid composites. Morphology evident the wear mechanism and internal compatibility of hybrid fibers.


Author(s):  
Mohd Fairuz Rashid ◽  
◽  
Hadzley Abu Bakar ◽  
Abdul Aziz Adam ◽  
Mohd Basri Ali ◽  
...  

22MnB5 Boron Steel can be considered as emerged material for high strength and low weight application. This material potentially used in abrasive condition such as cutting tool or brake pad where high friction resistance applies. In this study, the wear characteristics of 22MnB5 was investigated under the frictional tests via micro pin-on-disk. 22MnB5 Boron Steel was prepared the form of round shape within the size of 2.6 mm thickness and 12 mm diameter by using laser cutting. 4 different samples were tested namely blank (sample A), self-hardening heat treatment (sample B), 60 HRC hot stamped (sample C) and 70 HRC hot stamped (sample D). The results show that Coefficient of Friction (COF) increased as the hardness of 22MnB5 decreased. Low COF of 0.2114 recorded for sample D with 70 HRC hardness. The COF increased to 0.24, 0.29 and 0.3 when sample C (60 HRC), sample B (52 HRC) and sample A (45.5 HRC) applied respectively. For pin-on disc test, worn area decreased as the hardness increased. 22MnB5 that prepared with the highest hardness of 70 HRC presented smallest wear area of 700 µm x 2400 µm. It is followed by 800 µm x 2400 µm, 1000 µm x 2400 µm, 1600 µm x 2800 µm, when sample C, B and A were scratched. Observation on the worn surface revealed delamination of 22MnB5 surface in the form of fragmented flaking debris.


2014 ◽  
Vol 592-594 ◽  
pp. 1346-1351 ◽  
Author(s):  
Rakesh K. Rajan ◽  
Hemant Kumar ◽  
Shaju K. Albert ◽  
T.R. Vijayaram

Present work aimed at investigating the friction and wear of martensitic stainless steel of grade 410. This steel is used in nuclear industry for various moving components due to its high strength and moderate corrosion resistance. Properties of this material depend upon the heat treatment to which subjected to. The wear tests by sliding were performed on a pin on disk apparatus whose pin is in normalized and tempered condition. The counter face disc was machined from EN24 steel of high hardness in nature. The AISI 410 stainless steel wear rates were evaluated using Pin-on Disc Tribometer at various load and sliding speed. The worn pins were investigated by using scanning electron microscopy and surface profilometer.


2019 ◽  
Vol 58 (1) ◽  
pp. 271-279 ◽  
Author(s):  
Erkan Bahce ◽  
Nese Cakir

AbstractCrN/CrCN/TaN multilayer films were deposited onto the CoCrMo alloy substrates at different number layers as two, four and 8 layers by close-field unbalanced magnetron sputtering method. Microstructure and the tribo-logical properties of the films were characterized by XRD, SEM, pin-on-disk wear test, scratch test, micro hardness. CrN/CrCN/TaN multilayer coatings exhibited good adhesion properties on the CoCrMo alloy substrate. A very high hardness value of 60 GPa was obtained for 8 multilayered coating. As a result of the pin-on-disc wear tests, it was found that the tribological properties of the CoCrMo alloy were enhanced by coating its surface with this architecture by using close-field unbalanced magnetron system with used parameters.


2013 ◽  
Vol 315 ◽  
pp. 117-120
Author(s):  
S. Ilaiyavel ◽  
S. Jegannathan ◽  
K. Ravichandran ◽  
A. Venkatesan

Today, in the area of material design conversion coatings play an important role in applications where temperature, corrosion, oxidation and wear come in to play. Manganese Phosphate is used to reduce friction and improve lubrication in sliding components. In this study, Prediction of wear coefficient of uncoated, Manganese Phosphate coated, Manganese Phosphate with oil lubricant AISI D2 steels was investigated using Archards equation. The Surface morphology of Manganese Phosphate coatings was examined by scanning electron microscope (SEM) and Energy dispersive X-ray Spectroscopy (EDX) .The wear tests were performed in a pin on disk apparatus as per ASTM G-99 Standard. The wear loss and wear coefficient were evaluated through pin on disc test using a sliding velocity of 0.35 m/s under normal load of 10 to60 N and controlled condition of temperature and humidity. Based on the results of the wear test, the Manganese Phosphate with lubricant exhibited the lowest average wear coefficient of1.24 X10-10 and the lowest wear loss 0.37 mm3 under 60 N load.


2011 ◽  
Vol 110-116 ◽  
pp. 616-620 ◽  
Author(s):  
S. Ilaiyavel ◽  
A. Venkatesan ◽  
N. Nallusamy ◽  
T. Sornakumar

Manganese Phosphate is an Industrial coating used to reduce friction and improve lubrication in sliding components. In this study, the tribology behavior of uncoated, manganese phosphate coated, Manganese Phosphate with oil lubricant AISI D2 steels was investigated. The Surface morphology of manganese phosphate coatings was examined by scanning electron microscope (SEM) and Energy dispersive X-ray Spectroscopy (EDX) .The wear tests were performed in a pin on disk apparatus as per ASTM G-99 Standard. The wear resistance of the coated steel were evaluated through pin on disc test using a sliding velocity of 0.35 m/s under normal load of 5 to35 N and controlled condition of temperature and humidity. The Coefficient of friction and wear loss were evaluated. Based on the results of the wear test, the manganese phosphate with lubricant exhibited the lowest average coefficient of friction 0.13 and the lowest wear loss 0.4 mm3under 35 N load.


Lubricants ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 9
Author(s):  
Ahmed Nabhan ◽  
Ahmed Rashed ◽  
Nouby M. Ghazaly ◽  
Jamil Abdo ◽  
M. Danish Haneef

The tribological properties of Lithium grease specimens with different concentrations of Al2O3 nanoparticles were investigated using a pin on disc apparatus under different sliding speeds and normal loads. Results showed that Al2O3 nanoparticles enhanced the tribological properties of lithium grease and reduced the COF and wear scar width by approximately 57.9% and 47.5% respectively.


Author(s):  
Mehdi Kazemi ◽  
Abdolreza Rahimi

Generally, interactions at surface asperities are the cause of wear. Two-Thirds of wear in industry occurs because of the abrasive or adhesive mechanisms. This research presents an analytical model for abrasion of additive manufactured Digital Light Processing products using pin-on-disk method. Particularly, the relationship between abrasion volume, normal load, and surface asperities’ angle is investigated. To verify the proposed mathematical model, the results of this model are verified with the practical experiments. Results show that the most influential parameters on abrasion rate are normal load and surface’s normal angle. Abrasion value increases linearly with increasing normal load. The maximum abrasion value occurs when the surface’s normal angle during fabrication is 45°. After the asperities are worn the abrasion volume is the same for all specimens with different surface’s normal angle. Though layer thickness does not directly affect the wear rate, but surface roughness tests show that layer thickness has a great impact on the quality of the abraded surface. When the thickness of the layers is high, the abraded surface has deeper valleys, and thus has a more negative skewness. This paper presents an original approach in abrasion behavior improvement of DLP parts which no research has been done on it so far; thus, bringing the AM one step closer to maturity.


Sign in / Sign up

Export Citation Format

Share Document