KARAKTERISASI KEAUSAN KOMPOSIT CANGKANG KEMIRI DAN TEMPURUNG KELAPA SEBAGAI BAHAN PEMBUATAN KAMPAS REM (BRAKE PAD)

Author(s):  
Juan Randy Simamora ◽  
Chandra Kurniawan

The research has been conducted on the use of candlenut shells and coconut shells as composite materials in the manufacture of brake pads. The design of friction composite formulations is carried out based on four classes of friction material namely fillers, binders, reinforcing fibers and property modifiers with a fixed percentage based on weight. Comparison of the composition of Candlenut shell powder and coconut shell for each sample S-01 (35: 25) wt .-%, S-02 (30: 20) wt .-%, and S-03 (25: 15) wt. -%. From the results of data analysis, the values of water absorption for each sample were S-01 (0.00706%), S-02 (0.000496%), S-03 (0.00584%). The lowest wear test was found in the S-03 sample of 3.67 x 10-5 g / mm2.s. The SEM-EDS test results show the distribution of particles in different friction materials for each sample and show that carbon is present in approximately equal amounts in all formulations. The predominance of the presence of metals in brake linings includes: iron (Fe), magnesium (Mg), carbon (C), and aluminum (Al), silicon (Si), potassium (K)

Author(s):  
Asep Bayu Dani Nandiyanto ◽  
◽  
Alma Tyara Simbara ◽  
Gabriela Chelvina Santiuly Girsang ◽  
◽  
...  

This study aims to determine the effect of particle size and material composition on the performance of resin-based brake pads. Experiments were carried out by mixing 75% UPR with durian peel and banana midribs fibers using ratios of 1/1, 3/2, and 2/3 at particle sizes of 104 and 250 μm. The experimental results shows that decreasing the particle size improves the mechanical properties of brake pads, but gives a high wear value and a low coefficient of friction. In addition, an increase in the percentage of banana midrib fibers as a whole provides better brake pad performance. The results of the comparison between commercial-based brake pads confirm that agricultural waste is potential as an alternative to friction materials in brake pads. Brake pad with a fiber ratio of 2/3 104 μm had highest values of hardness, wear and friction coefficient, namely 20.33 N/cm3, 2.02 x 10-4 g/s.mm2, and 0.2465. while the 1/1 250 μm and 3/2 250 μm had the lowest coefficient values and compressive strength of 0.1195 and 9.14 N/cm3. This study demonstrates the use of biomass waste as an alternative to friction material to overcome the dangerous problem of using asbestos in brake pads.


2012 ◽  
Vol 622-623 ◽  
pp. 1559-1563
Author(s):  
M.A. Sai Balaji ◽  
K. Kalaichelvan

The formulation of a brake pad requires the optimization of multiple performance criteria. To achieve a stable and adequate friction (µ), the brake pad materials should have low fade and higher recovery characteristics coupled with less wear and noise. Among the properties mentioned, resistance to fade is very difficult to achieve. The type and amount of resin in the friction material is very critical for structural integrity of the composites. The binder should not deteriorate under any diverse conditions. The thermal stability of friction materials and its capacity to bind its ingredients collectively under diverse conditions depend upon the quality and proportion of resin. The current work evaluates the fade and recovery behaviour of developed friction composites from two different resins which are traditional straight phenolic resin and the alkyl benzene modified phenolic resin. Two brake pads with these different resins were fabricated as per Industrial Standard. TGA is carried between 150 – 4000 C as this zone of temperature is very critical which accounts for the weight loss (Thermal degradation). Friction and wear studies were carried out on a friction coefficient test rig as per SAE J661a standard. The results showed that the fade and wear of the friction materials were closely related to the thermal decomposition of the binder resin and durability of the contact plateaus, which were produced by the compaction of wear debris around hard ingredients on the rubbing surface. It was clearly observed that the friction materials with modified resin showed significant reduction in fade %. Friction materials made with higher thermal stability showed resistance to fade. However wear didn’t show much noticeable changes.


Author(s):  
CH Achebe ◽  
JL Chukwuneke ◽  
FA Anene ◽  
CM Ewulonu

The development of automobile brake pad using locally sourced palm kernel fiber was carried out. Asbestos, a carcinogenic material, has been used for decades as a friction material. This development has thus prompted a couple of research efforts geared towards its replacement for brake pad manufacture. Palm kernel fiber was used as an alternative filler material in conjunction with various quantities of epoxy resin as the matrix. Three sets of compositions were made, and the resulting specimens subjected to physical and mechanical tests using standard materials, procedures, and equipment. The essence is to determine their suitability and hence possible performance in service. The result showed that sample C with 40% palm kernel fiber content having hardness, compressive strength, abrasion resistance, specific gravity, water absorption, and oil absorption of 178 MPa, 96.2 MPa, 1.67 mg/m, 1.8 g/cm3, 1.86%, and 0.89%, respectively, had an optimum performance rating. It was equally ascertained that increase in the filler content had the effect of increase in hardness, wear resistance, and specific gravity of the composite brake pad, while water and oil absorption got decreased when compared with results obtained by other researchers using conventional brake pads made of other friction materials including asbestos. This is an indicator that palm kernel fiber is a possible and effective retrofit for asbestos as a filler material in automotive brake pad manufacture.


2011 ◽  
Vol 299-300 ◽  
pp. 820-823
Author(s):  
A.A.S. Ghazi ◽  
K. Chandra ◽  
P.S. Misra

To develop a high density brake pad for low duty application, a P/M route based on ‘Hot Powder Preform Forging’ was developed, which is not possible by sintering route. The mechanical properties of these materials were characterized using ASTM standards. The limitations of the conventional technique i.e. Compacting and Sintering for the manufacture of brake pads were tried to remove by adopting this technology. It offers better opportunity for pore free materials with better bonding between metallic and non-metallic constituents. Fade and Recovery test were done by using a Krauss Tester. μfade, μrecoveryand μperformancelie within the range of friction materials used for low duty applications.


2013 ◽  
Vol 10 (6) ◽  
pp. 523-528 ◽  
Author(s):  
A. Muzathik ◽  
Y. Nizam ◽  
M. Ahmad ◽  
W. Nik

Friction material in an automotive brake system plays an important role for effective and safe brake performance. A single material has never been sufficient to solve performance related issues. Current research aimed to examine properties of Boron mixed brake pads by comparing them with the commercial brake pads. Friction coefficient of Boron mixed brake pads and commercial brake pads were significantly different and increased with the increase in surface roughness. The abrupt reduction of friction coefficient is more significant in commercial brake pad samples than in Boron mixed brake pad formulations. Fade occurred in commercial brake pad sample at lower temperatures. Boron formulations are more stable than their commercial counterparts.


2021 ◽  
Vol 9 (2) ◽  
pp. 017-023
Author(s):  
Anak Agung Alit Triadi ◽  
Sujita Darmo

The purpose of the study is to determine the best composition variation of the fifth variation of the composition of the composite material against the wear test, hardness test, tensile test comparing values ​​ with the safety standards of the brake lining composite SAEJ 661. Making the specimens was performed by mixing the ingredients with a mixer for 15 minutes and then do the process of compaction, with a load of 4 tons and detained achieve holding time is desired, then dies (mould) are placed in the oven and do the sintering process at a temperature of 1500 C for 180 minutes and specimens removed from the mould, the process of finishing and testing. These test results show that the composition of the material that is on variation V best price obtained 96.575 HBN hardness, wear rates of 1,29x10-6 gr / (mm2.detik), and a tensile strength of 0.842 MPa, but the brake friction material not meet safety standards SAEJ brake 661.


2020 ◽  
Vol 21 (6) ◽  
pp. 613
Author(s):  
Amira Sellami ◽  
Nesrine Hentati ◽  
Mohamed Kchaou ◽  
Mohammad Asaduzzaman Chowdhury ◽  
Riadh Elleuch

Friction materials are composed of numerous ingredients which differ from nature and particles size. Each ingredient has its own impact on the mechanical and tribological behavior of the material. Brass ingredients have a great impact on the thermal gradient dissipation in the sliding contact between disc and brake pad material. In this research, the influence of different sizes and forms of brass ingredient was studied on the friction material behavior. The physical (density), mechanical (yield strength, young module) and thermal (thermal conductivity and specific heat) properties of the considered composites were characterized. Results proves that only physical and mechanical properties are sensitive to the changes in size and form of brass particles. The tribological behavior of the brake friction materials was also assessed using a pin-on-disc tribometer. The results show that bigger brass particles and their elongated shape allows it to be well embedded on the pad surface during braking application, and thus decreased wear rate . In contrast, the smaller particle decrease the friction stability and it rounded shape increase wear of the material since it tearing from the surface by abrasive wear.


2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Kateřina Dědková ◽  
Marcus Morbach ◽  
Jakub Výravský ◽  
Kateřina Mamulová Kutláková ◽  
Kristina Čabanová ◽  
...  

An automotive friction brake pad is a complex system consisting of several components with unique and balanced properties related to operation conditions. There are efforts to develop brake pads with longer lifetime and better friction performance and wear properties. Those properties are related to composition of the pads, and therefore, new materials are being evolved. Tuning the friction and wear properties can be achieved with the selection of a functional filler and optimizing its amount in a formulation of friction brake pad. Laboratory-developed and laboratory-prepared nanocomposite material kaolin/TiO2 (KATI) has been introduced to formulation of the commercially available automotive low-steel brake pad. Kaolin was utilized as a matrix for anchoring TiO2 nanoparticles. New unused pads and pads after AK master, a standard dynamometer testing procedure of friction performance, were investigated using light and scanning electron microscopy providing information on the structure and its changes after the friction processes. Moreover, MTK wear test was used to compare wear rate of the newly developed pad with the reference low-steel pad. Improved durability of the brake pad formulation has been observed together with sufficient friction performance. Microscopic analysis shown homogenous distribution of the KATI nanocomposite in the friction layer. From the obtained results, it can be assumed that the new formulation is promising regarding to the life cycle of the pads and reduction of wear rate and thus potential production of wear particulate emissions.


Sign in / Sign up

Export Citation Format

Share Document