Road Vehicles - Friction Materials - Finished Brake Pad Normalized Elastic Constant of Friction Material

2019 ◽  
Author(s):  
2020 ◽  
Vol 21 (6) ◽  
pp. 613
Author(s):  
Amira Sellami ◽  
Nesrine Hentati ◽  
Mohamed Kchaou ◽  
Mohammad Asaduzzaman Chowdhury ◽  
Riadh Elleuch

Friction materials are composed of numerous ingredients which differ from nature and particles size. Each ingredient has its own impact on the mechanical and tribological behavior of the material. Brass ingredients have a great impact on the thermal gradient dissipation in the sliding contact between disc and brake pad material. In this research, the influence of different sizes and forms of brass ingredient was studied on the friction material behavior. The physical (density), mechanical (yield strength, young module) and thermal (thermal conductivity and specific heat) properties of the considered composites were characterized. Results proves that only physical and mechanical properties are sensitive to the changes in size and form of brass particles. The tribological behavior of the brake friction materials was also assessed using a pin-on-disc tribometer. The results show that bigger brass particles and their elongated shape allows it to be well embedded on the pad surface during braking application, and thus decreased wear rate . In contrast, the smaller particle decrease the friction stability and it rounded shape increase wear of the material since it tearing from the surface by abrasive wear.


2020 ◽  
Vol 54 (27) ◽  
pp. 4299-4310
Author(s):  
V Vineeth Kumar ◽  
S Senthil Kumaran ◽  
S Dhanalakshmi

Copper-based sintered friction materials are most suitable for heavy-duty off-road vehicles, trains, aircraft, and military applications. This present study aims to investigate the tribological performance, dominating wear mechanism of an existing copper-tin sintered friction material that is being used in armoured fighting vehicle. The brake pad was tested as per IS 2742 using the chase test machine. Especially fade cycle was carried out till 441℃ to analyze the frictional response of the material. Physical, mechanical, and tribological properties were evaluated as per industrial standards. Morphological analysis was carried out using field emission scanning electron microscopy, and wear debris analysis was carried out using scanning electron microscopy–energy dispersive X-ray analysis and X-ray diffraction analysis. The dominating wear mechanisms were found to be delamination and abrasive wear. The investigated results showed a less wear rate of 0.05 cm3/MJ. However, results seem to be better for high-energy applications by exhibiting excellent mechanical properties.


Author(s):  
K Rajesh Kannan ◽  
M Govindaraju ◽  
R Vaira Vignesh

Fly ash based sintered materials are identified as potential brake pad materials for wind turbines. However, fly ash based friction materials fabricated through conventional techniques results in more porosity and undesirable tribological properties. This study attempts to develop liquid phase sintering technology for fly ash using Cu as a liquid phase sintering agent. The study presents a comprehensive analysis of the evolution of microstructure, microhardness, and tribological performance of the specimens sintered in Argon and Air environment.


Author(s):  
Juan Randy Simamora ◽  
Chandra Kurniawan

The research has been conducted on the use of candlenut shells and coconut shells as composite materials in the manufacture of brake pads. The design of friction composite formulations is carried out based on four classes of friction material namely fillers, binders, reinforcing fibers and property modifiers with a fixed percentage based on weight. Comparison of the composition of Candlenut shell powder and coconut shell for each sample S-01 (35: 25) wt .-%, S-02 (30: 20) wt .-%, and S-03 (25: 15) wt. -%. From the results of data analysis, the values of water absorption for each sample were S-01 (0.00706%), S-02 (0.000496%), S-03 (0.00584%). The lowest wear test was found in the S-03 sample of 3.67 x 10-5 g / mm2.s. The SEM-EDS test results show the distribution of particles in different friction materials for each sample and show that carbon is present in approximately equal amounts in all formulations. The predominance of the presence of metals in brake linings includes: iron (Fe), magnesium (Mg), carbon (C), and aluminum (Al), silicon (Si), potassium (K)


Author(s):  
Asep Bayu Dani Nandiyanto ◽  
◽  
Alma Tyara Simbara ◽  
Gabriela Chelvina Santiuly Girsang ◽  
◽  
...  

This study aims to determine the effect of particle size and material composition on the performance of resin-based brake pads. Experiments were carried out by mixing 75% UPR with durian peel and banana midribs fibers using ratios of 1/1, 3/2, and 2/3 at particle sizes of 104 and 250 μm. The experimental results shows that decreasing the particle size improves the mechanical properties of brake pads, but gives a high wear value and a low coefficient of friction. In addition, an increase in the percentage of banana midrib fibers as a whole provides better brake pad performance. The results of the comparison between commercial-based brake pads confirm that agricultural waste is potential as an alternative to friction materials in brake pads. Brake pad with a fiber ratio of 2/3 104 μm had highest values of hardness, wear and friction coefficient, namely 20.33 N/cm3, 2.02 x 10-4 g/s.mm2, and 0.2465. while the 1/1 250 μm and 3/2 250 μm had the lowest coefficient values and compressive strength of 0.1195 and 9.14 N/cm3. This study demonstrates the use of biomass waste as an alternative to friction material to overcome the dangerous problem of using asbestos in brake pads.


2012 ◽  
Vol 622-623 ◽  
pp. 1559-1563
Author(s):  
M.A. Sai Balaji ◽  
K. Kalaichelvan

The formulation of a brake pad requires the optimization of multiple performance criteria. To achieve a stable and adequate friction (µ), the brake pad materials should have low fade and higher recovery characteristics coupled with less wear and noise. Among the properties mentioned, resistance to fade is very difficult to achieve. The type and amount of resin in the friction material is very critical for structural integrity of the composites. The binder should not deteriorate under any diverse conditions. The thermal stability of friction materials and its capacity to bind its ingredients collectively under diverse conditions depend upon the quality and proportion of resin. The current work evaluates the fade and recovery behaviour of developed friction composites from two different resins which are traditional straight phenolic resin and the alkyl benzene modified phenolic resin. Two brake pads with these different resins were fabricated as per Industrial Standard. TGA is carried between 150 – 4000 C as this zone of temperature is very critical which accounts for the weight loss (Thermal degradation). Friction and wear studies were carried out on a friction coefficient test rig as per SAE J661a standard. The results showed that the fade and wear of the friction materials were closely related to the thermal decomposition of the binder resin and durability of the contact plateaus, which were produced by the compaction of wear debris around hard ingredients on the rubbing surface. It was clearly observed that the friction materials with modified resin showed significant reduction in fade %. Friction materials made with higher thermal stability showed resistance to fade. However wear didn’t show much noticeable changes.


2012 ◽  
Vol 531-532 ◽  
pp. 8-12
Author(s):  
M.A. Sai Balaji ◽  
K. Kalaichelvan

Organic fibres (Kevlar/ Arbocel / Acrylic) have good thermal stability, higher surface area and bulk density. The optimization of organic fibres percentage for thermal behaviour is considered using TGA. The temperature raise during brake application will be between 150-4000 C and this temperature zone is very critical to determine the fade characteristics during friction testing. Hence, three different friction composites are developed with the same formulation varying only the Kevlar, Arbocel and Acrylic fibres which are compensated by the inert filler namely the barites and are designated as NA01, NA02 and NA03 respectively. After the fabrication, the TGA test reveals that the composite NA03 has minimum weight loss. The friction coefficient test rig is then used to test the friction material as per SAE J661a standards. The results prove that the brake pad with minimum weight loss during TGA has higher friction stability. Thus, we can correlate the thermal stability with the stability of friction.


2018 ◽  
Vol 1150 ◽  
pp. 22-42
Author(s):  
Dinesh Shinde ◽  
Kishore N. Mistry ◽  
Suyog Jhavar ◽  
Sunil Pathak

The peculiar feature of friction materials to absorb the kinetic energy of rotating wheels of an automobile to control the speed makes them remarkable in automobile field. The regulation of speed cannot be achieved with the use of single phase material as a friction material. Consequently, the friction material should be comprised of composite materials which consist of several ingredients. Incidentally, the friction materials were formulated with friction modifier, binders, fillers and reinforcements. Due to its pleasant physical properties, asbestos was being used as a filler. Past few decades, it is found that asbestos causes dangerous cancer to its inhaler, which provides a scope its replacement. Several attempts have been made to find an alternative to the hazardous asbestos. The efforts made by different researchers for the impact of every composition of composite friction material in the field are reviewed and studied for their effect on the properties of friction material. Surface morphological studies of different friction material are compared to interpret the concept of surface wear and its correlation with material properties.


Sign in / Sign up

Export Citation Format

Share Document