scholarly journals Nanocomposite Kaolin/TiO2 as a Possible Functional Filler in Automotive Brake Pads

2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Kateřina Dědková ◽  
Marcus Morbach ◽  
Jakub Výravský ◽  
Kateřina Mamulová Kutláková ◽  
Kristina Čabanová ◽  
...  

An automotive friction brake pad is a complex system consisting of several components with unique and balanced properties related to operation conditions. There are efforts to develop brake pads with longer lifetime and better friction performance and wear properties. Those properties are related to composition of the pads, and therefore, new materials are being evolved. Tuning the friction and wear properties can be achieved with the selection of a functional filler and optimizing its amount in a formulation of friction brake pad. Laboratory-developed and laboratory-prepared nanocomposite material kaolin/TiO2 (KATI) has been introduced to formulation of the commercially available automotive low-steel brake pad. Kaolin was utilized as a matrix for anchoring TiO2 nanoparticles. New unused pads and pads after AK master, a standard dynamometer testing procedure of friction performance, were investigated using light and scanning electron microscopy providing information on the structure and its changes after the friction processes. Moreover, MTK wear test was used to compare wear rate of the newly developed pad with the reference low-steel pad. Improved durability of the brake pad formulation has been observed together with sufficient friction performance. Microscopic analysis shown homogenous distribution of the KATI nanocomposite in the friction layer. From the obtained results, it can be assumed that the new formulation is promising regarding to the life cycle of the pads and reduction of wear rate and thus potential production of wear particulate emissions.

2020 ◽  
Vol 10 (14) ◽  
pp. 4909
Author(s):  
Shing-Hoa Wang ◽  
Chau-Chang Chou ◽  
Hsien-Hung Chung ◽  
Rong-Tan Huang ◽  
Horng-Yi Chang ◽  
...  

Lubricated sliding wear of amorphous (Zr55Cu30Ni10Al5)99.98Sc0.02/CuZr2 nanocrystal composite bulk metallic glasses (BMG) under various sliding velocities with a load of 20 N was investigated using the pin-on-disk test. After the wear test involving oil lubrication was performed, there was no wear induced new-phase transformation in the sample surface. Friction coefficients were within the range from 0.22 to approximately 0.29 under a 20-N load at different sliding velocities. Therefore, the calculated friction coefficients clearly indicated that the adhesion wear dominated from the experimental results. This deformation behavior resulted in a higher wear rate and wear coefficient. In addition, worn surfaces were characterized and examined under a scanning electron microscope (SEM) and optical microscope. The mechanism of high wear rate was clarified.


2017 ◽  
Vol 30 (2) ◽  
pp. 247-253 ◽  
Author(s):  
Ye Zhu ◽  
Yingshuang Shang ◽  
Haibo Zhang ◽  
Lianjun Ding ◽  
Yunping Zhao ◽  
...  

Poly(ether sulfone) (PES) with high coefficient of friction (COF) and wear rate needs treatment to enhance its tribological property in engineering plastic area. Here, the low surface energy of perfluorocarbon chains terminated poly (ether sulfone) (PES-F) had been used to improve the tribological property of such self-lubricating materials. In this research, the performance enhancement due to the existence of perfluorocarbon group on the material surface was discussed on improvement of anti-friction and wear resistance. On the premise of mechanical strength guarantee, the variation regularity of COF and volume wear rate of PES-F were quantitatively analyzed through the pin-on-disc wear test apparatus, combined with X-ray photoelectron spectroscopy analysis. It was found that PES-F exhibited the best tribological property during the initial phases of friction test, attributing to the highest content of F on the material surface. Observation of PES-F worn surface and wear debris revealed that the COF and wear rate of modified PES were decreased not only due to the effect of perfluorocarbon group but also by the change of worn surface morphology, both of which were the main reasons for anti-friction and anti-wear property enhancement.


Author(s):  
N. O. Adekunle ◽  
K. A. Oladejo ◽  
S. I. Kuye ◽  
A. D. Aikulola

Asbestos-based brake pads are not desirable due to the carcinogenic nature of asbestos. Organic asbestos-free brake automotive brake pad produced from bamboo leaves was evaluated in this study. Ground bamboo leaves were sieved into sieve grades of 100, 200, and 350 μm. The sieved bamboo leaves particles were then combined with 15 % steel dust, 10% graphite, 20% resin, Silicon Carbide varied five (5) times between 35-55 % and 0-20% respectively for each sieve grade to make brake pads of different ratios. The mechanical properties (hardness, compressive strength, density, porosity, wear rate, and flame resistance) of the produced samples were investigated. The results showed that the finer the particle size of the bamboo leaves, the better the mechanical properties of the produced samples. The results of this work when compared with those of the commercial (asbestos based) brake pad showed they were in close agreement except for the wear rate and porosity property. Therefore, bamboo leaves could be used in the production of asbestos free brake pads if the wear rate and porosity properties of the produced samples could be improved.


2021 ◽  
pp. 002199832199753
Author(s):  
Sait Aras ◽  
Necmettin Tarakçıoğlu

In this study, an organic brake pad content was created to increase the overall tribological performance of the automobile brake system. Brake lining samples were obtained by hot molding method using juniperus drupacea cones powder which is not found in the literature in addition to barite, phenolic resin, fiber types (glass, carbon and basalt) and coke in the lining content. In order to determine the most ideal production conditions and content ratios, parameter combinations based on the L18(21 × 35) Taguchi orthogonal index were used according to the density, hardness, wear rate, friction coefficient objective functions. The density and hardness of the samples produced based on the orthogonal design were measured. A wear test was performed on a pin-on-disc type tribometer and the wear rate and friction coefficients were calculated according to the obtained values. Signal to noise ( S/N) ratio and ANOVA analysis were performed to determine the brake pad composition with the most ideal tribological properties. According to the results, the mixing time is 15 min., the molding temperature is 160 °C, the molding pressure is 100 MPa and the molding time is 15 min., have been found to be the optimum production conditions. In addition, it was observed that the density and hardness decreased as the amount of juniperus drupacea cone powder was increased. For this reason, it has been observed that the juniperus drupacea cone powder used for the first time in the brake lining composition can be used in lining content up to 25%, preferably up to 10% by weight.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Bikramjit Basu ◽  
Amartya Mukhopadhyay ◽  
Ankit Mishra ◽  
J. Sarkar

The thermal conductivity of a metallic test piece is one of the principal parameters that influence the temperature buildup at tribocontacts and this normally plays an important role in the unlubricated dry sliding wear of metallic materials. It is, however, not clear whether thermal conductivity is an equally important parameter in the case of wear of metals at cryogenic temperatures, in particular, at liquid nitrogen temperature (LN2) of −196°C. In order to assess the influence of such a physical property of selected nonferrous metals on their tribological behavior in the LN2 environment, we have studied the friction and wear properties of high purity copper (Cu) and titanium (Ti) against the bearing grade steel. These two materials have been processed to produce samples of comparable hardness that have widely different thermal conductivities at room temperature and at test temperature. Wear tests were conducted at three different sliding speeds (0.89 m/s, 1.11 m/s, and 1.34 m/s) under 10 N load, and the friction and wear data were compared. Ti exhibited an order of magnitude higher wear rate (∼10−3 mm3/N m) as compared with Cu in identical test conditions. While evidences of abrasive wear and adhesive wear, without any oxidative wear, were found in worn Cu surfaces, worn Ti surfaces showed evidences of significant oxidative wear and mechanical damage of tribolayers. Higher wear rate in Ti appeared to be a result of oxidative wear of Ti, which seemed to be driven by the depletion of LN2 blanket at the tribocontacts under the influence of high flash temperature (14–76°C) as compared with the boiling temperature of LN2(−196°C). These results demonstrate that the materials with similar hardness subjected to identical LN2 wear test conditions can have significantly different wear rates because of the difference in the flash temperatures, which depend on the thermal conductivity of the test pieces.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 100
Author(s):  
Ioan Feier ◽  
Joseph Way ◽  
Rob Redfield

High-power bicycle disc braking can create excessive temperatures and boiling brake fluid, resulting in performance degradation and damage. The goal of this work is to understand brake friction performance and thermal behavior for bicycle disc brakes. A previously described disc braking dynamometer is used to assess brake pad performance of sintered metallic brake pads, organic brake pads, and ‘power’ organic pads in up to 400 W of braking power. The friction coefficient is found to be dependent on both temperature and normal force. Friction curve fits are provided for temperatures between 300 K and 550 K. Organic and ‘power’ organic pads are found to have similar behavior, and have higher friction coefficients compared to metallic pads. Further, brakes on an instrumented bicycle are tested in outdoor field trials during downhill descent. A MATLAB thermal model successfully predicts the downhill field brake disc temperatures when using the friction data curve fits.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 128
Author(s):  
Napisah Sapiai ◽  
Aidah Jumahat ◽  
Mohammad Jawaid ◽  
Carlo Santulli

Kenaf (Hibiscus Cannabinus) fibers have received significant attention for replacing the usage of synthetic fibers, especially glass fiber, in the fabrication of fiber-reinforced polymer (FRP) composites. The aim of this research was to study the change in wear behavior of kenaf–epoxy fiber composites by filling them with multiwall carbon nanotubes (MWCNT). In particular, the effect of untreated MWCNT (PMWCNT), acid-treated MWCNT (AMWCNT), and silane-treated MWCNT (SMWCNT) was studied, using three different MWCNT loadings, i.e., 0.5, 0.75, and 1 wt.%. The abrasive wear test was conducted to measure the wear properties of the composites. A thermal infrared camera was also used to measure the punctual contact temperature during the abrasive wear test, while the abraded surfaces were analyzed using the stereomicroscope. Starting from the considerable reduction of wear rate with the introduction of kenaf fibers, it was observed that PMWCNT provided some further, yet modest, reduction of wear rate only at the higher loadings. In contrast, the inclusion of AMWCNT proved to increase the specific wear rate of the epoxy–kenaf composites, an effect worsened at higher loadings. This may be due to the weakened interfacial bonding between the AMWCNT and epoxy. On the other hand, the presence of SMWCNT improved the interfacial bonding between CNT and epoxy, as shown by an increase in contact temperature. However, the increase in bonding strength was stipulated to have caused the rougher worn debris, thus inducing a three-body abrasive wear effect.


2021 ◽  
Vol 38 (1−2) ◽  
Author(s):  
Oluwatoyin Joseph Gbadeyan ◽  
T. P. Mohan ◽  
K. Kanny

This research focuses on the mechanical and effect of oil absorption on the tribological properties of carbon-based brake pad material (CBP).  Carbon-based materials, including those at a nanosize, are combined for developed brake pad material. The mechanical properties related to wear properties such as compression strength, stiffness, hardness, and absorption properties were determined. The effect of oil absorption on the tribological properties of carbon-based materials was investigated. The obtained properties are compared with that of a ceramic-made brake pad (commercial). The experimental results show that the mechanical and absorption properties of the developed brake pad material varied with the combination and quantity of additives used to develop each brake pad material. CBP material offered higher performance than ceramic-made brake pads. The CBP material showed a higher shear strength of about 110%, 51% enhanced compressive strength, 35% greater modulus, comparative statistical hardness, 98% lesser water intake, and 97% oil absorption rate than ceramic made brake pad. The tribological properties of friction material after soaked in oil proved that absorption properties affect tribological properties of brake pads, which can be attributed to the oil content in the material system. The effect of oil uptakes on wear rate and friction of the commercial brake pad was higher than CBP materials, implying that the loading of carbon-based materials is a viable way to reduce absorption rate, which helps in increasing brake pad performance. The improved properties are suggestive of materials combinations that may be used to develop brake pad materials.


2011 ◽  
Vol 328-330 ◽  
pp. 1636-1641 ◽  
Author(s):  
Che Mohd Ruzaidi Ghazali ◽  
H. Kamarudin ◽  
Shamsul Baharin Jamaludin ◽  
M. M. A. Abdullah

The attractive performance-to-cost ratio associated with the incorporation of waste material in composite formulations used to produce brake pads has stimulated the idea of exploring the possible incorporation of additional waste materials in such formulations. Thus, the viability of adding palm slag to the composite formulation used in brake pads was investigated, and the results are reported in this paper. In addition, other fillers, such as calcium carbonate and dolomite, were used for comparative purposes. The properties examined included thermal properties, compressive strength, and wear behavior. The results showed that palm slag has significant potential for use as an alternative to the existing fillers in the composite formulations used to produce brake pads.


Author(s):  
Juan Randy Simamora ◽  
Chandra Kurniawan

The research has been conducted on the use of candlenut shells and coconut shells as composite materials in the manufacture of brake pads. The design of friction composite formulations is carried out based on four classes of friction material namely fillers, binders, reinforcing fibers and property modifiers with a fixed percentage based on weight. Comparison of the composition of Candlenut shell powder and coconut shell for each sample S-01 (35: 25) wt .-%, S-02 (30: 20) wt .-%, and S-03 (25: 15) wt. -%. From the results of data analysis, the values of water absorption for each sample were S-01 (0.00706%), S-02 (0.000496%), S-03 (0.00584%). The lowest wear test was found in the S-03 sample of 3.67 x 10-5 g / mm2.s. The SEM-EDS test results show the distribution of particles in different friction materials for each sample and show that carbon is present in approximately equal amounts in all formulations. The predominance of the presence of metals in brake linings includes: iron (Fe), magnesium (Mg), carbon (C), and aluminum (Al), silicon (Si), potassium (K)


Sign in / Sign up

Export Citation Format

Share Document