scholarly journals Overcoming Immune Depletion is the Main Goal of Developing New Therapies for Cancer or Severe Viral Infections

2021 ◽  
pp. 100-140
Author(s):  
Ricardo Gobato ◽  
Abhijit Mitra

It is widely known that severe viral infections and cancer disrupt the immune system, including T cells, a process called "immune fatigue." Overcoming immune depletion is the main goal of developing new therapies for cancer or severe viral infections. Called Apex cells, they can maintain their function for a long time. Keywords: Cancer; Cells; Tissues; Tumors; Prevention; Prognosis; Diagnosis; Imaging; Screening, Treatment; Management

2021 ◽  
pp. 121-159
Author(s):  
Elena Locci ◽  
Silvia Raymond

It is widely known that severe viral infections and cancer disrupt the immune system, including T cells, a process called "immune fatigue." Overcoming immune depletion is the main goal of developing new therapies for cancer or severe viral infections. Called Tpex cells, they can maintain their function for a long time. Keywords: Cancer; Cells; Tissues, Tumors; Prevention, Prognosis; Diagnosis; Imaging; Screening; Treatment; Management


Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1051
Author(s):  
Huiming Cai ◽  
Ge Liu ◽  
Jianfeng Zhong ◽  
Kai Zheng ◽  
Haitao Xiao ◽  
...  

As evidence has mounted that virus-infected cells, such as cancer cells, negatively regulate the function of T-cells via immune checkpoints, it has become increasingly clear that viral infections similarly exploit immune checkpoints as an immune system escape mechanism. Although immune checkpoint therapy has been successfully used in cancer treatment, numerous studies have suggested that such therapy may also be highly relevant for treating viral infection, especially chronic viral infections. However, it has not yet been applied in this manner. Here, we reviewed recent findings regarding immune checkpoints in viral infections, including COVID-19, and discussed the role of immune checkpoints in different viral infections, as well as the potential for applying immune checkpoint blockades as antiviral therapy.


2009 ◽  
Vol 2009 ◽  
pp. 1-3 ◽  
Author(s):  
R. García-Muñoz ◽  
P. Rodríguez-Otero ◽  
A. Galar ◽  
J. Merino ◽  
J. J. Beunza ◽  
...  

CD57+T cells increase in several viral infections like cytomegalovirus, herpesvirus, parvovirus, HIV and hepatitis C virus and are associated with several clinical conditions related to immune dysfunction and ageing. We report for the first time an expansion of CD8+CD57+T cells in a young patient with an acute infection with Toxoplasma gondii. Our report supports the concept that CD8+CD57+T cells could be important in the control of chronic phase of intracellular microorganisms and that the high numbers of these cells may reflect the continuing survey of the immune system, searching for parasite proliferation in the tissues.


2021 ◽  
pp. 553-591
Author(s):  
Elena Locci ◽  
Silvia Raymond

A groundbreaking study led by engineering and medical researchers at the California South University (CSU) shows how immune cells engineered in new cancer therapies can overcome physical barriers so that the patient's own immune system can fight tumors. This research could improve the future of millions of cancer patients worldwide. Immunotherapy, instead of using chemicals or radiation, is a type of cancer treatment that helps the patient's immune system fight cancer. T cells are a type of white blood cell that is essential for the body's immune system. Cytotoxic T cells are like soldiers searching for and destroying target invading cells. Although there has been success in using immunotherapy for some types of cancer in the blood or blood-producing organs, T cell work is much more difficult in solid tumors. Keywords: Cancer; Cells; Tissues, Tumors; Prevention, Prognosis; Diagnosis; Imaging; Screening; Treatment; Management


Bionatura ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 942-947
Author(s):  
Camila Lissett Velastegui Gamboa ◽  
Dayanara Lissette Yánez Arcos

Lung cancer is a disease difficult to treat and with low survival rates, especially non-smaller cell lung cancer (NSCLC). To treat cancer in advanced stages, new methods had arisen like immunotherapy. Pembrolizumab and nivolumab are IgG4 antibodies targeting programmed death cell receptor (PD-1) used for cancer immunotherapy, that blocks the protection that has cancer cells against the immune system. This antibody works binding and blocking the PD-1 membrane protein of T cells, which is responsible for cell recognition. If T cells cannot recognize the cells, then it would attack, so in this way, the immune system can be enhanced. Pembrolizumab and nivolumab have a variable region that is capable of recognizing the PD-1 receptor, and this plays an important role to kill cancer cells. The structure of the complex PD -1 and its ligand PD-L1 or PD-L2 reveals the structural basis of the PD-1. The interaction with a human antibody has been studied with antibody fragments revealing the molecular basis for the blockade of PD1 / PDL1-PDL2 interaction by pembrolizumab and nivolumab. Different studies involving immunotherapy have shown the remarkable results of pembrolizumab and nivolumab over current chemotherapy for cancer treatment making available a possible way for a new treatment for lung cancer. In a comparative analysis made between those immune checkpoint inhibitors had found the efficacy of pembrolizumab for treatment of NSCLC.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 1378-1383
Author(s):  
Kanyaka Bagde ◽  
Bharat Rathi ◽  
Renu Rathi ◽  
Prem Badwaik ◽  
Swapnali Khabde

The greatness of Ayurveda medicine is that it works on your immune system and helps to build up the body to fight against viral invasions. It is the safest, economical and natural way of self-healing. It can quickly spread among masses from rich to poor all over the country. Ayurveda has been dealing with plenty of herbs for a very long time. These herbs include some rare to prevalent herbs which we can found some in the kitchen even though if that is of any commoners. The concern is that these viral infections are very prone to attack weak immunity and take the chance to affect the country to the globe. So the prevalent herbs of Ayurveda available in the kitchen will always be helpful to get through this viral invasion. These herbs are always there to make tasty food as well as to protect the body from infectious diseases by building the immunity strong. Herbs from the kitchen are not complicated to take as a medicine. Regular use of a few herbs in the straightforward form proves its importance as a medicine. In this article a review of herbs is done which we are available in our kitchen, we are using it in our daily life, and we are getting the benefit of these which a common man might not be fully aware of about. 


2021 ◽  
Author(s):  
Jordan Anaya ◽  
Alexander S. Baras

ABSTRACTImmune checkpoint blockade, a form of immunotherapy, mobilizes a patient’s own immune system against cancer cells by releasing some of the natural brakes on T cells. Although our understanding of this process is evolving, it is thought that a patient response to immunotherapy requires tumor presentation of neoantigens to T cells and patients whose tumors present a wider array of neoantigens are more likely to derive benefit from immune checkpoint blockade1–4. Manczinger et al.5 recently reported findings that would appear contrarian to this notion in that they suggested patients with HLA alleles which bind more diverse peptides (higher promiscuity) are less likely to respond to immunotherapy. To estimate HLA promiscuity they looked at the HLA-peptide binding repertoires for class I alleles contained in the IEDB6, and obtained consistent results when performing robustness checks and subsequent analyses. Here we show that the proposed HLA promiscuity values can vary significantly across source data types and individual experiments.


2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Amaan Rather ◽  
Pavithran Ravindran

Synthetic immunology is a field in which researchers design constructs that will help immune cells battle pathogens, most commonly cancer cells. This is particularly crucial for human health due to the considerable number of ways that invaders (to the body) possess to minimize the effectiveness of the immune system. Frequently, these changes take place in the form of developing more advanced synthetic receptors for better recognition of pathogens so that T-cells can execute more precise functions in the body. Other changes are also made to give researchers more control over the advancements that have been inserted into the body, heightening the level of safety for the patients who receive them. Considering the newfound research that has been conducted, this paper focuses on the significance of upgrading various parts of the immune system in terms of the way that they can help protect the body. It also highlights the extensive potential this field has in the future considering the adaptability and functionality of the current, newly-designed systems in place.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
S. Viganò ◽  
M. Perreau ◽  
G. Pantaleo ◽  
A. Harari

The immune system has evolved to allow robust responses against pathogens while avoiding autoimmunity. This is notably enabled by stimulatory and inhibitory signals which contribute to the regulation of immune responses. In the presence of a pathogen, a specific and effective immune response must be induced and this leads to antigen-specific T-cell proliferation, cytokines production, and induction of T-cell differentiation toward an effector phenotype. After clearance or control of the pathogen, the effector immune response must be terminated in order to avoid tissue damage and chronic inflammation and this process involves coinhibitory molecules. When the immune system fails to eliminate or control the pathogen, continuous stimulation of T cells prevents the full contraction and leads to the functional exhaustion of effector T cells. Several evidences bothin vitroandin vivosuggest that this anergic state can be reverted by blocking the interactions between coinhibitory molecules and their ligands. The potential to revert exhausted or inactivated T-cell responses following selective blocking of their function made these markers interesting targets for therapeutic interventions in patients with persistent viral infections or cancer.


2019 ◽  
Vol 7 (1) ◽  
pp. 45-61
Author(s):  
Pedro J. Llanos ◽  
Kristina Andrijauskaite

AbstractResearch indicates that exposure to microgravity leads to immune system dysregulation. However, there is a lack of clear evidence on the specific reasons and precise mechanisms accounting for these immune system changes. Past studies investigating space travel-induced alterations in immunological parameters report many conflicting results, explained by the role of certain confounders, such as cosmic radiation, individual body environment, or differences in experimental design. To minimize the variability in results and to eliminate some technical challenges, we advocate conducting thorough feasibility studies prior to actual suborbital or orbital space experiments. We show how exposure to suborbital flight stressors and the use of a two-dimensional slow rotating device affect T-cells and cancer cells survivability. To enhance T-cell activation and viability, we primed them alone or in combination with IL-2 and IL-12 cytokines. Viability of T-cells was assessed before, during the experiment, and at the end of the experiment for which T-cells were counted every day for the last 4 days to allow the cells to form clear structures and do not disturb their evolution into various geometries. The slow rotating device could be considered a good system to perform T-cell activation studies and develop cell aggregates for various types of cells that react differently to thermal stressors.


Sign in / Sign up

Export Citation Format

Share Document