scholarly journals PENGARUH PEMBERIAN DOLOMIT DAN PUPUK KANDANG SAPI TERHADAP PERTUMBUHAN DAN PRODUKSI TANAMAN KEDELAI (Glycine max (L.) Merr) DI TANAH ULTISOL

AgriPeat ◽  
2021 ◽  
Vol 22 (01) ◽  
pp. 21-32
Author(s):  
Putri Nuraini ◽  
Dedik Budianta ◽  
Fitri Siti Nurul Aidil

This research was conducted at the ATC Experimental Garden, Faculty of Agriculture, Sriwijaya University, Indralaya, Ogan Ilir Regency, and began in September 2019 until February 2020. The analyzes of soil and plant have been carried out at the Laboratory of Chemistry, Biology, and Soil Fertility, Soil Department, Faculty of Agriculture, Sriwijaya University, Indralaya. This study aims at determining the effect of dolomite and cow manure on the growth and production of soybean (Glycine max (L.) Merr) in Ultisol Soil. This study used a factorial randomized block design with 2 treatment factors and 3 replications. The first factor is dolomite CaMg (CO3)2 consisting of two levels, 5 tons ha-1 and 10 tons ha-1. The second treatment factor is cow manure consisting of three levels, namely without manure, 10 tons ha-1, and 20 tons ha-1. The results indicated that interaction the giving of dolomite and cow manure had a significant effect in increasing soil pH, and plant N uptake. The giving of dolomite 10 tons ha-1 significantly affected the weight of 100 seeds and soybean production The giving of cow manure 20 tons ha-1 had a very significant effect on plant height, total number of pods, and the number of filled pods of soybean in Ultisols.

SoilREns ◽  
2018 ◽  
Vol 16 (1) ◽  
Author(s):  
Anni Yuniarti ◽  
Yuliati Machfud ◽  
Eso Solihin ◽  
Yogi Sudirman ◽  
Apong Sandrawati

Inceptisol is a widespread soil order with low fertility. Hence it is necessary to improve its quality status through the application of chemical and biological fertilizers. The main objecttive of this study is to determine the effect of NPK fertilizer and biofertlizer consortia (BC) combinations in Inceptisols towards N and P availability in soil and uptake by soybean (Glycine max L.). Experiments were carried out from April to August 2016 at Ciparanje Experimental Farm, Faculty of Agriculture, Universitas Padjadjaran, Jatinangor, Sumedang at the approximate altitude of 720 meters above the sea level. Randomized Block Design experimental design consisted of ten treatments and three replications was used in this study. Treatments consisted of control (no treatment), Recommended NPK dosage, 0 NPK + 1 BC, ¼ NPK + 1 BC, ½ NPK + 1 BC, ¾ NPK + 1 BC, 1 NPK + 1 BC, ¾ NPK + ¼ BC, ¾ NPK + ½ BC and also ¾ NPK + ¾ BC. Experimental results showed that the combination of NPK fertilizer and soybean-spesific biofertilizer consortium increased soil total phosphate content,  nitrogen uptake by plant, and soyben yield significantly.  Keywords: Biofertilizer, Soybean, total-N, Uptake of N, Inceptisols


Agric ◽  
2020 ◽  
Vol 31 (2) ◽  
pp. 136-145
Author(s):  
Reginawanti Hindersah ◽  
Rara Rahmantika Risanti ◽  
Ibnu Haikal ◽  
Yuliati Mahfud ◽  
Nenny Nurlaeny ◽  
...  

Biofertilizer which contain rhizobacteria Azotobacter increase soil fertility and improve plant growth through nitrogen fixation and phytohormone production. The objective of this study was to compare the responses of soybean (Glycine max (L.) Merill) plants in dry land after the application of several Azotobacter inoculation methods. Field experiments were carried out with a randomized block design consisting of five treatments with five replicates each. The treatments were seed inoculation, soil treatment before planting, soil treatment after planting and plant dressing. Plant inoculation with Azotobacter treated with half of recommended dosage urea  while the control plant received recommended dose urea. The experimental results showed that all application methods did not affect soybean production, number of nodules, Azotobacter populations in the rhizosphere and N total soil; but Azotobacter inoculation through leaves increased N uptake and weight of 100 soybean seeds.


2018 ◽  
Vol 45 (3) ◽  
pp. 263
Author(s):  
Endriani , ◽  
Munif Ghulamahdi ◽  
Dan Eko Sulistyono

Soybean (Glycine max L. Merrill) demand is high in Indonesia, however national production is low, therefore improving productivity is important. The research was aimed to determine the effect of application of biofertilizer containing N- fixing and P- solubilizing bacteria on the growth and production of soybean in lowland swamp. The experiment was conducted  at  Labuhan Ratu VI Village, District of Labuhan Ratu, East Lampung Regency from September to December 2014. The experiment was arranged in factorial randomized block design with three replications. N and P fertilizers were applied in four levels. Doses of N were 0, 11.25, 22.50, 33.75 kg ha-1, doses of P were 0, 36, 72, 108 P2O5 kg ha-1, in combination with and without biofertilizer application. The results showed that interaction between biofertilizer and N significantly affected number of branches and number of leaves at maximum vegetative phase. The influence of three types of fertilizer had no significant effect on the productivity of soybean in lowland swamp with soil pH of 7.0 and medium soil fertility. It is recommended to apply Biofertilizer + 11,25 kg N ha-1 + 36 kg P2O5 ha-1 to obtain high soybean production in lowland swamp area.<br /><br />Keywords: nitrogen, phosphate, productivity, soil fertility<br /><br />


2017 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Siti Rodiah ◽  
Zulfatunnisa Zulfatunnisa ◽  
Sumadi Sumadi ◽  
Anne Nuraini ◽  
Meddy Rachmadi ◽  
...  

The variation of the seed size in each species and individuals might be from of difference species adaptation for  a difference environment. This difference may also arise from the constraints of limited formation of seed size. The use of adaptive ciltivars on the growth environment is very influential on the succes in the farm field. This research was aimed to find the adaptation of phase and size seed of two cultivars of soybeans in Jatinangor and Cikajang. This research was held in Jatinangor (Sumedang regency) and Cikajang (Garut regency) from April to July 2016. The design that used in this research was Randomized Block Design (RBD) and Duncan at 5% rate. Improved cultivars that tested in this research were placed at Grobogan and Anjasmoro which were repeated 5 times. The results of experiment showed that adaptation of size seed showed of 100 grains and large seeds. The low temperature condition can increase of variability of seed size. Heterogeneity of environment can not sustain the size of soybean seed. Genetic and environment factors influence significantly for weight of 100 grains and seed size Grobogan in Jatinangor. The weight of 100 grains Grobogan in Jatinangor and Cikajang haved a greater than Anjasmoro. Environmental factors influence yield of soybean, weight of 100 grains of cultivars in Cikajang haved a greater than Jatinangor caused by the seed size.


Jurnal BIOMA ◽  
2014 ◽  
Vol 10 (2) ◽  
pp. 41 ◽  
Author(s):  
Priskilla Purnaning Putri ◽  
Adisyahputra Adisyahputra ◽  
Asadi Asadi

Abstract Soybean (Glycine max L.) is annual crop that have high morphologies and yield components diversity. The research was conducted at the first season of 2011, the objective of the research were to find morphological, yield, and yield component of Soybean germplasm (Glicine max L.). The research was carried out at experimental station BB-BIOGEN Citayam, Depok, and laboratory of Gene Bank BB-BIOGEN. The experiment used randomized block design with 100 different accessions and three replications for each accession. Based on the observation, the morphological characters have many visual forms. They are as follows: growth percentage in which 19.33 – 99%; growth types were determinate and indeterminate, the leave form was triangle to sharp; purple and white flowers; yellow and black seeds color. The range of values for each characteristic component are as follows: plant height 29,23 – 104,25 cm; number of pods per plant was 23,6 – 99,82; flowering time 33 – 47 days after planting; 100 seed weight 5,98 – 20,77 gram; maturing time 75 – 96,67 days after planting; root nodule’s weight 0,004 – 0,109 gram; seed’s weight 3,15 – 11,45 gram/plant. Among the accessions, the highest yield was shown by B 4323 (643,27 gram/3,6 m2). Significant correlation was shown between soybean’s yield components and yield which were plant’s height, growth percentage, numbers of main stem’s node, numbers of pods, seeds weight for each plant and root nodule’s weight. 100 seeds weight showed significant negative correlation with soybean components.   Key words: germplasm, morphological characteristics, soybean, yield components


2019 ◽  
Vol 24 (2) ◽  
pp. 97-107
Author(s):  
Yunia Vella Alfani ◽  
Pudjawati Suryatmana ◽  
Ade Setiawan

This study was aimed at determining the increasing of growth and production of soybean crops by giving Azotobacter sp. and additive materials such as coconut water, molasses, and bran. This research was conducted on Januari 2018 to April 2018 at Ciparanje Experimental Field Faculty of Agriculture. Universitas Padjadjaran, Jatinangor, Sumedang, West Java Province, on ± 774 meters above sea level (asl) using single factor randomized block design with 10 treatments; Azotobacter sp. and additive materials combination such as coconut water, molasses, and bran in three repetitions. The observations on the parameters observed in the final vegetative phase were on plant height, chlorophyll content, and population of Azotobacter sp. using Total Plate Count (TPC) method.The results show that the application of combination additives materials and Azotobacter sp. effect on populations Azotobacter sp., chlorophyll content, plant height and number of soybean pods (Glycine max L.). Application of coconut water independently, water added with Azotobacter sp., and combination of additive with Azotobacter sp. can give the best effect to the content of chlorophyll, plant height, and soybean crops components (Glycine max. L.).PENGARUH KOMBINASI BAHAN ADITIF DAN Azotobacter sp. TERHADAP PERTUMBUHAN Glycine max. L.Penelitian ini bertujuan untuk mengetahui pertumbuhan dan produksi tanaman kedelai dengan memberikan Azotobacter sp. dan aditif air kelapa, molase, serta dedak. Penelitian ini dilaksanakan pada Januari 2018-April 2018 di Kebun Percobaan Ciparanje Fakultas Pertanian Universitas Padjadjaran, Jawa Barat pada ± 774 meter di atas permukaan laut (dpl). Penelitian ini menggunakan rancangan acak kelompok dengan 10 perlakuan pemberian Azotobacter sp. dan aditif air kelapa, molase, serta dedak dengan tiga ulangan. Pengamatan terhadap parameter yang diamati pada fase vegetatif akhir yaitu tinggi tanaman, kandungan klorofil, dan populasi Azotobacter sp. dengan metode Total Plate Count (TPC). Hasil penelitian menunjukkan aplikasi kombinasi bahan aditif dan penambahan pupuk hayati Azotobacter sp. berpengaruh terhadap populasi Azotobacter sp., kadar klorofil, tinggi tanaman dan jumlah polong tanaman kedelai (Glycine max L.). Aplikasi air kelapa secara mandiri, air kelapa yang ditambahkan dengan Azotobacter sp., dan kombinasi bahan aditif dengan Azotobacter sp. dapat memberikan pengaruh terbaik terhadap kandungan klorofil, tinggi tanaman, dan komponen hasil tanaman kedelai (Glycine max. L.). 


Author(s):  
Abhishek . ◽  
H.S. Purohit ◽  
Gajanand Jat ◽  
R.S. Choudhary ◽  
R.H. Meena ◽  
...  

Background: Enriched composts supply the plant nutrients and add a sufficient amount of organic matter to the soil, which helps in improving the physical, chemical and biological properties of the soil. It helps to maintain and sustain soil fertility for enhancing crop productivity and also acts as a recess for microbes and enriches the soil with a variety of the indigenous micro-flora and fauna. Hence, the present investigation was carried out to study the effect of fertility levels and enriched compost on productivity, quality and profitability of soybean (Glycine max L.) in sub-humid southern plain and Aravalli hills region of Rajasthan. Methods: The experiment was undertaken during kharif 2018 at Rajasthan College of agriculture, Udaipur (Rajasthan) in a factorial randomized block design with three replications. The treatments were comprised of three levels of recommended dose of fertilizers (RDF) (control, 50% RDF and 100% RDF) and four levels of enriched compost (control, 2.0, 4.0 and 6.0 t ha-1). Result: The increasing fertility levels upto 100% RDF and enriched compost upto 4 t ha-1, significantly increased (P=0.05) the plant height, dry matter accumulation, number of pods per plant, number of seeds per pod, seed yield, haulm yield and protein and oil content in seed of soybean. However, the combined application of 100% RDF along with 6 t ha-1 enriched compost recorded higher seed and haulm yield. The results further revealed that the application of 100% RDF and 4 t ha-1 enriched compost significantly improved the productivity, quality and profitability of soybean under Typic Haplustepts soil.


AGRICA ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 96-105
Author(s):  
Murdaningsih Murdaningsih ◽  
Marsianus Nate Ugha

This research aims to know the effect as well as the optimum rates of manure of urine cow bio to the growth and yield of the soybean plant. The design used in this study was Randomized Block Design and the treatment used is U0 (without bio urine manure), U1 (1375 litres of bio urine manure ha-1 or 550 ml plots-1), U2 (bio urine manure of 2750 litre ha-1 or 1100ml plots -1), U3 (bio urine manure 4125 litre ha-1 or 1650 ml plot-1), and U4 (bio urine manure of 5500 litre ha-1 or 2200 ml plot-1). Variable observation in this study is the height of the plant 33.8 cm, leaf number 2.90 strands, leaf area 1.17cm2, the weight of fresh residues tan-114,74 gr, dry oven weight of residue tan-1 15.50 gr, dry oven weight of residue  ha-1 15.50kg, the number of pods 9.44 soybean, weight of 100 grain of soybean 1 0.91 gr, the weight of the seed tan-110.30 gr, seed dry weight ha-110, 30 kg, harvest index of 4.88 and optimum dosage of the manure of urine cow bio is 5500 litres ha-1 can increase the growth and yield of soybeans.


2020 ◽  
Vol 21 (3) ◽  
pp. 195-199
Author(s):  
Neha Awasthi ◽  
R.G. Upadhyay ◽  
Anita Singh ◽  
Rameshwar Kumar ◽  
G.D. Sharma

Current study was conducted to evaluate the influence of organic and zero budget natural farming on growth and yield of Soybean (Glycine max. L) under mountainous conditions of Himachal Pradesh. During the experimental period the variety of Soybean (Palam Soya) was sowed with eight treatments and three replications. The treatments consist of T1 -FYM-10t/ha+Rhizobium,T2-Vermicompost-7.5t/ha+Rhizobium,T3- FYM- 5 t/ha + vermicompost -3.75 t/ha + Rhizobium-T4 -Natural farming (Ghanjivamrit+Jivamrit+Bijamrit), T5 -FYM-10t/ha + vermiwash -3 spray, T6 -Vermicompost- 10t/ha +vermiwash – 3 spray, T7- Ghanjivamrit-125 kg/ha and T8 – FYM -5t/ha + ghanjivamrit – 125kg/ha with Randomized Block Design (RBD). During the course of study significantly highest plant height (cm), number of leaves, number of branches at various growth stages, days taken to 50 percent flowering and maturity were influenced by vermicompost along with three sprays of vermiwash. The significantly highest biological yield (2409.09kg /ha), seed yield (825 kg/ ha) and yield attributes of Soybean crop were recorded in the treatment T6 –Vermicompost @ 10t/ha + 3 sprays of vermiwash during the experiment.


2016 ◽  
Vol 10 (1) ◽  
pp. 20-36 ◽  
Author(s):  
Eka Febriana Sari ◽  
Palupi Puspitorini ◽  
Tri Kurniastuti

The research aims to determine of the effect application legin and urea fertilizer to growth and result of soybean (Glycine max (L.) Merr.). The research held in June until August 2016 in the Menjangan Kalung, Slorok village, Garum, Blitar. This research used method was Split Split Plot Randomized Block Design factorial pattern of two factors and three replications. This first factor was dose legin (L) consisted three level namely : dose 3 g kgˉ¹ (L1), dose 5 g kgˉ¹ (L2), and 7 g kgˉ¹(L3). The second factor was dose urea fertilizer (U) consisted four level namely : Without urea fertilizer (U0), 10 kg haˉ¹(U1), 20 kg haˉ¹(U2), and 30 kg haˉ¹(U3). Observation parameters is plant height, number of leaves, the number of nodules, number of pods, number of empaty pods, number of pods, and dry weight of 100 seed. Data were analyzed with used analysis of variance , if take effect fellowed with LSD. Research result to show that: 1)The best interaction is teratment combination L2U2 that don ’t real different with treatment L2U3, L2U1 and L2U0. 2) Application doselegin 5 g kgˉ¹ in alone is the best treatment that result highest averagely with percentage 25.48% appealed with application dose legin 3 g kgˉ¹ and 7 g kgˉ¹. 3) Application doselegin 5 g kgˉ¹ in alone is the best treatment that result highest averagely with percentage 6.58% appealed with application dose fertilizer urea 0 kg haˉ¹, 10 kg haˉ¹ and 30 kg haˉ¹.


Sign in / Sign up

Export Citation Format

Share Document