scholarly journals ANALYSIS OF THE INFLUENCE OF THE FORM AND DIMENSIONS OF THE CROSS-SECTION OF CLEANLESS TAPERS ON THE PROCESS OF EXTRACTING THREADS

Author(s):  
Oleksіі Tokarchuk

The method of manufacturing internal threads with chipless taps, including mutual pumping of the tool and the workpiece, as in the manufacture of external thread profiles, so it cannot be entered into the knurling methods. Due to the specific features of the thread extrusion process, the study of the operational characteristics of rubber manufactured by chipless taps is of practical interest. The extrusion of threads occurs at a temperature not reaching the temperature of recrystallization of the metal of the workpiece, however, the physic mechanical properties of the surface layer of the metal of the threaded profile change. As a result of cold displacement of the threaded profile, the metal flows in the threaded contour. Extrusion of internal threads by chipless taps is a method of plastic deformation of a metal, in which a special tapping rod with a profile of the necessary thread is screwed into a workpiece opening, which has a diameter equal to approximately the average diameter of the thread. Under the action of torque, the tops of the turns of the tapered intake part of the tap penetrate the surface of the billet hole, the displaced metal moves in the radial direction, gradually increasing the height of the threaded profile. The actual geometry of the vertices of the tool cross-section contour has a significant effect on the thread extrusion process. Depending on the ratio of the contact planes of the tool and the workpiece, depending on the permissible amount of backing, the greatest torque is observed in hexagonal taps, and the smallest in trihedral taps. Depending on the accepted backing value, the ratio between the lengths and areas of the contacting sections, and accordingly, the ratio between the torques for taps with a different number of faces, also changes. It should be noted that in addition to the magnitude of the torque, the second parameter characterizing the process of extruding threads is the stability of the taps, which is not directly related to the magnitude of the torque, then the optimal number of faces is n = 3. If the optimal number of faces simultaneously satisfies two criteria (minimum torque and maximum tool life), then the optimal number of faces is determined experimentally in a specific case

Author(s):  
Douglas L. Dorset

A variety of linear chain materials exist as polydisperse systems which are difficultly purified. The stability of continuous binary solid solutions assume that the Gibbs free energy of the solution is lower than that of either crystal component, a condition which includes such factors as relative molecular sizes and shapes and perhaps the symmetry of the pure component crystal structures.Although extensive studies of n-alkane miscibility have been carried out via powder X-ray diffraction of bulk samples we have begun to examine binary systems as single crystals, taking advantage of the well-known enhanced scattering cross section of matter for electrons and also the favorable projection of a paraffin crystal structure posited by epitaxial crystallization of such samples on organic substrates such as benzoic acid.


Author(s):  
Natalia Prodiana Setiawati ◽  
Joko Santoso ◽  
Sri Purwaningsih

The utilization of local food commodities such as corn and cassava with seaweed addition as a dietary fiber source for producing artificial rice through extrusion technology is an  alternative for food diversification. The research was carried out to find out the best composition (rice, corn, cassava, and seaweed) and temperature of extrusion process on making artificial rice and the influence of dietary fibre on sensory properties and physicochemical. The composition of rice, corn, and cassava in proportion  of 1:3:1 with 20% seaweed, Eucheuma cottonii, addition and temperature extruder of 90 °C were selected as the best product for artificial rice. The  sensory evaluation was 8.02±0.21 (people’s preference). In physicochemical properties, dietary fiber significantly affected on low bulk density and starch digestibility. This condition is very good for health especially in maintaining the stability of blood glucose in the body. Keywords: artificial rice, composition, extrusion, seaweed, dietary fibre, temperature


Author(s):  
Rebekah J. Nixon ◽  
Sascha H. Kranen ◽  
Anni Vanhatalo ◽  
Andrew M. Jones

AbstractThe metabolic boundary separating the heavy-intensity and severe-intensity exercise domains is of scientific and practical interest but there is controversy concerning whether the maximal lactate steady state (MLSS) or critical power (synonymous with critical speed, CS) better represents this boundary. We measured the running speeds at MLSS and CS and investigated their ability to discriminate speeds at which $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 was stable over time from speeds at which a steady-state $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 could not be established. Ten well-trained male distance runners completed 9–12 constant-speed treadmill tests, including 3–5 runs of up to 30-min duration for the assessment of MLSS and at least 4 runs performed to the limit of tolerance for assessment of CS. The running speeds at CS and MLSS were significantly different (16.4 ± 1.3 vs. 15.2 ± 0.9 km/h, respectively; P < 0.001). Blood lactate concentration was higher and increased with time at a speed 0.5 km/h higher than MLSS compared to MLSS (P < 0.01); however, pulmonary $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 did not change significantly between 10 and 30 min at either MLSS or MLSS + 0.5 km/h. In contrast, $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 increased significantly over time and reached $$\dot{V}{\text{O}}_{2\,\,\max }$$ V ˙ O 2 max at end-exercise at a speed ~ 0.4 km/h above CS (P < 0.05) but remained stable at a speed ~ 0.5 km/h below CS. The stability of $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 at a speed exceeding MLSS suggests that MLSS underestimates the maximal metabolic steady state. These results indicate that CS more closely represents the maximal metabolic steady state when the latter is appropriately defined according to the ability to stabilise pulmonary $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 .


1. Introduction and Summary. —This paper deals with the elastic stability of a circular annular plate under uniform shearing forces applied at its edges. Investigations of the stability of plane plates are altogether simpler than those necessary in the case of curved plates or shells. In the first place, as shown by Mr. R. V. Southwell, two of the three equations of stability relate to a mode of instability that is not of practical interest, and are entirely independent of the third equation which gives the ordinary mode of instability resulting in the familiar bending of the middle surface of the plate. Consequently with a plane plate there is only one equation of stability to be solved, as contrasted with the case of a shell where the three equations are dependent, and must all be solved. In the second place the theory of thin shells can be used with confidence in a plane plate problem, though a more laborious procedure is necessary to deal adequately with a shell. The only stability equation required for the annular plate is therefore deduced without trouble from the theory of thin shells, and its solution presents no difficulty in the case of uniform shearing forces. A numerical discussion is given of the stability of the plate under such forces, the “favourite type of distortion” and the stess that will produce it being obtained for plates with clamped edges in wich the ratio of the outer to the inner radius exceeds 3·2. To some extent to results have been checked by experiment, in which part of the work the viter is indebted to Prof. G. I. Taylor for his valuable help and advice. Distrtion of the type predicted by the theory took place in the two thin plates of rober different ratio of radii, which were used. The disposition of the loci of points which undergo maximum normal displace nt gives some idea of the appearance of the plate after distortion has taken pce. The points have been calculated for a plate in which the ratio of radii 4·18, and the loci are shown on a diagram, which may be compared with a potograph of a distorted plate in which this ratio is 4·3. The ratio of normal dplacements of points of the plate can be seen from contours drawn on the ne diagram. (See pp. 280, 281.)


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2169
Author(s):  
Agnieszka Tabaczyńska ◽  
Anna Dąbrowska ◽  
Marcin Masłowski ◽  
Anna Strąkowska

Electro-conductive paths that are mechanically resistant and stable during simulated aging cycles are promising, in relation to the non-invasive application in e-textiles in our everyday surroundings. In the paper, an analysis of the influence of electro-conductive filler, as well as ionic liquid on surface resistance is provided. Authors proved that depending on the tested variant, obtained surface resistance may vary from 50 kΩ (when 50 phr of Ag and [bmim][PF6] ionic liquid applied) to 26 GΩ (when 25 phr of Ag and [bmim][PF6] ionic liquid applied). The samples were also evaluated after simulated aging cycles and the stability of electric properties was confirmed. Moreover, it was proved that the addition of ionic liquids reduced the resistance of vulcanizates, while no significant influence of the extrusion process on conductivity was observed.


Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 55 ◽  
Author(s):  
Muhammad Syafiq Mohd Razib ◽  
Raja Noor Zaliha Raja Abd Rahman ◽  
Fairolniza Mohd Shariff ◽  
Mohd Shukuri Mohamad Ali

Cross-linked enzyme aggregates (CLEAs) is an immobilization technique that can be used to customize enzymes under an optimized condition. Structural analysis on any enzyme treated with a CLEA remains elusive and has been less explored. In the present work, a method for preparing an organic solvent tolerant protease using a CLEA is disclosed and optimized for better biochemical properties, followed by an analysis of the structure of this CLEA-treated protease. The said organic solvent tolerant protease is a metalloprotease known as elastase strain K in which activity of the metalloprotease is measured by a biochemical interaction with azocasein. Results showed that when a glutaraldehyde of 0.02% (v/v) was used under a 2 h treatment, the amount of recovered activity in CLEA-elastase was highest. The recovered activity of CLEA-elastase and CLEA-elastase-SB (which was a CLEA co-aggregated with starch and bovine serum albumin (BSA)) were at an approximate 60% and 80%, respectively. The CLEA immobilization of elastase strain K allowed the stability of the enzyme to be enhanced at high temperature and at a broader pH. Both CLEA-elastase and CLEA-elastase-SB end-products were able to maintain up to 67% enzyme activity at 60 °C and exhibiting an enhanced stability within pH 5–9 with up to 90% recovering activity. By implementing a CLEA on the organic solvent tolerant protease, the characteristics of the organic solvent tolerant were preserved and enhanced with the presence of 25% (v/v) acetonitrile, ethanol, and benzene at 165%, 173%, and 153% relative activity. Structural analysis through SEM and dynamic light scattering (DLS) showed that CLEA-elastase had a random aggregate morphology with an average diameter of 1497 nm.


2013 ◽  
Vol 554-557 ◽  
pp. 630-637 ◽  
Author(s):  
Martin Grüner ◽  
Marion Merklein

Aluminium alloys show a great potential for lightweight constructions due to their high strength and low density but the production of this material is very energy consuming. Also the recycling of aluminium alloys, e.g. chips from the milling process, shows different challenges. Beside contamination by cooling lubricant and oxidation of the surface of the chips the melting and rolling process for new semi finish products needs a high amount of energy. TEKKAYA shows a new approach for recycling of aluminium alloy chips by an extrusion process at elevated temperatures producing different kinds of profiles. A new idea is the production of components directly out of chips using severe plastic deformation for joining of the chips similar to the accumulative roll bonding process in sheet metal forming. In a first approach aluminium alloy chips out of a milling process were uniaxial compressed with different loads inside an axisymmetric tool installed in a universal testing machine. The compressed chip disks subsequently were tested with two experiments to gain information on their stability. First experiment is a disk compression test with the disk standing on its cylindrical surface, giving information on the stability perpendicular to the compression direction. Second experiment is a stacked disk compression test with three disks to investigate the stability parallel to compression direction. During all three tests force and displacement values are recorded by the universal testing machine. These data are also processed to calculate or identify input parameters for the numerical investigations. For numerical simulation ABAQUS in conjunction with the Drucker-Prager-Cap material model, which is often used for sintering processes, seems to be a good choice. By numerical simulation of the experiments and comparison with the experiments input parameters for the material model can be identified showing good accordance. This material model will be used in future numerical investigations of an extrusion process to identify tool geometries leading to high strains inside the material and by this to an increased stability of the parts.


Author(s):  
Oleksandr Ahafonov ◽  
◽  
Daria Chepiga ◽  
Anton Polozhiy ◽  
Iryna Bessarab ◽  
...  

Purpose. Substantiation of expediency and admissibility of use of the simplified calculation models of a coal seam roof for an estimation of its stability under the action of external loadings. Methods. To achieve this purpose, the studies have been performed using the basic principles of the theory of elasticity and bending of plates, in which the coal seam roof is represented as a model of a rectangular plate or a beam with a symmetrical cross-section with different support conditions. Results. To substantiate and select methods for studying the bending deformations of the roof in the coal massif containing the maingates, the three-dimensional base plate model and the beam model are compared, taking into account the kinematic boundary conditions and the influence of external distributed load. Using the theory of plate bending, the equations for determining the deflections of the coal seam roof in three-dimensional basic models under certain assumptions have a large dimension. After the conditional division of the plate into beams of unit width and symmetrical section, when describing the normal deflections of the middle surface of the studied models, the transition from the partial derivative equation to the usual differential equations is carried out. In this case, the studies of bending deformations of roof rocks are reduced to solving a flat problem in the cross-section of the beam. A comparison of solutions obtained by the methods of the three-dimensional theory of elasticity and strength of materials was performed. For a beam with a symmetrical section, the deflection lies in a plane whose angle of inclination coincides with the direction of the applied load. The calculations did not take into account the difference between the intensity of the surface load applied to the beam. Differences in determining the magnitude of the deflections of the roof in the model of the plate concerning the model of the beam reach 5%, which is acceptable for mining problems. Scientific novelty. To study the bending deformations and determine the magnitude of the roof deflection in models under external uniform distributed load, placed within the simulated plate, a strip of unit width was selected, which has a symmetrical cross-section and is a characteristic component of the plate structure and it is considered as a separate load-bearing element with supports, the cross-sections of this element is remained flat when bending. The deflection of such a linear element is described by the differential equations of the bent axis of the beam without taking into account the integral stiffness of the model, and the vector of its complete displacement coincides with the vector of the force line. Practical significance. In the laboratory, to study the bending deformations and their impact on the stability of the coal seam roof under external loads, it is advisable to use a model of a single width beam with a symmetrical section with supports, the type of which is determined by rock pressure control and secondary support of the maingate at the extraction layout of the coal mine.


2021 ◽  
Vol 17 (10) ◽  
pp. 1939-1950
Author(s):  
Beibei Lin ◽  
Xuegu Xu ◽  
Xiaobi Zhang ◽  
Yinfei Yu ◽  
Xiaoling Wang

We prepared poly(lactide-co-glycolide) (PLGA) encapsulated with chlorin e6 (Ce6) in an effort to increase the stability and efficiency of photosensitizers for photodynamic therapy (PDT). We determined that Ce6-loaded PLGA nanoparticles (PLGA-Ce6 NPs) had drug-loading efficiency of 5%. The efficiency of encapsulation was 82%, the zeta potential was- 25 mV, and the average diameter was 130 nm. The encapsulation of Ce6 in PLGA nanoparticles showed excellent stability. The nanoparticles exhibited sustained Ce6 release profiles with 50% released at the end of 3 days, whereas free Ce6 showed rapid release within 1 day. Ce6 release patterns were controlled by encapsulation into PLGA. The uptake of PLGA-Ce6 NPs was significantly enhanced by endocytosis in the first 8 hours in the HCT-116 cell line. An intracellular reactive oxygen species assay revealed the enhanced uptake of the nanoparticles. An in vitro anti-tumor activity assay showed that the PLGA-Ce6 NPs exhibited enhanced phototoxicity toward HCT-116 cells and a slightly lower IC50 value in HCT-116 cells than Ce6 solution alone. Exposure of HCT-116 cell spheroids to PLGA-Ce6 NPs penetrated more profoundly and had better phototoxicity than pure drugs. These findings suggest that PLGA-Ce6 NPs might serve as PDT for colorectal cancer.


Sign in / Sign up

Export Citation Format

Share Document