scholarly journals Analyzing the identification mechanism of graphite and clay minerals in coal and gangue using X-rays

Author(s):  
Jianqiang Yin ◽  
Hongzheng Zhu ◽  
Jinbo Zhu ◽  
Qiuyu Zeng ◽  
Liansheng Li ◽  
...  
Author(s):  
G. Nagelschmidt

According to their atomic arrangement the minerals found in clays can be divided into the two-layer and the three-layer structures. The members of the first group have alternating silica and alumina layers, e.g. kaolinite; the members of the second group have one alumina (or magnesium or iron) layer between two silica layers, e.g. pyrophyllite. The clay minerals can also be classified into two groups according to their power to diffract X-rays. The first group gives good powder photographs with twenty to forty well-developed lines if copper or iron radiations are used, whereas the second group gives poor diagrams with only a few lines, usually under fifteen, some of which are wide and indistinct. Exposure times for the second group are about two to three times as large as those for the first group. The poor diffracting power for X-rays may be due either to a lack of regularity (‘roughness’) of the lattice, or to an extremely small size of the single crystallites. It is possible that both effects are aetive to some extent, but the lack of regularity of the lattice is probably the main reason. Neither the microscopic evidence nor sedimentation data based on Stokes's law show these minerals to have particles smaller than 10-6 cm., though it is possible that the optical effects such as double refraction are due to aggregation, and it is clear that the equivalent radius is an unsatisfactory measure for plate~shaped particles. Both classifications are shown on p. 141.


Clay Minerals ◽  
1986 ◽  
Vol 21 (5) ◽  
pp. 827-859 ◽  
Author(s):  
H. Vali ◽  
H. M. Köster

AbstractExpanding and non-expanding layers of interstratified clay minerals have been examined by high-resolution transmission electron microscopy. Permanent expansion of swelling layers under the electron beam was achieved by intercalation of n-alkylammonium ions, especially the octadecylammonium ion. Oriented flakes of clay minerals were prepared by embedding the expanded or non-expanded clay minerals in epoxy resin, followed by centrifugation before hardening of the resin. The minerals were then cut perpendicular to 001 using an ultramicrotome. Crystals of macroscopic trioctahedral vermiculites show homogeneous interplanar distances of 24 Å after intercalation of octadecylammonium ions. Crystals of dioctahedral soil vermiculites often show a central zone with non-expanding 10 Å layers; the outer zone shows a disturbed layer sequence extensively expanded by n-alkylammonium ions. After embedding in epoxy resin, vermiculites show stable 9·2 Å interplanar spacings but smectites expand to 13 Å. Montmorillonites of the Wyoming type show curved stacks of layers. Most of the layer stacks of montmorillonites of the Cheto type are split and disordered aggregates of single layers are formed. Crystals of illites and glauconites are built up of aggregated small stacks of 10 Å layers, the layer stacks consisting of 10 layers. Mostly the boundaries of the layer stacks are parallel to their 001 planes; sometimes low-angle boundaries are found. The dimensions of the layer stacks, ∼ 100 Å thick and some hundreds of Å in plane, are equal to the dimensions of the domains of coherent scattering of X-rays. The border layers between the layer stacks are identical with those 5 to 10% of layers which swell with glycerol or ethylene glycol during X-ray analysis. Some of the layer stacks of illite and glauconite crystals are expanded by octadecylammonium ions within a fortnight. The other stacks show unchanged 10 Å spacings. The different expanding behaviour of different layer stacks reflects the heterogeneity of the layer-charge distribution in the mica clay minerals. K-bentonites show the same expanding behaviour as illites and glauconites but the number of layers expanding with octadecylammonium ions is greater in K-bentonites than in illite crystals. Expanded mixed-layered minerals of the illite-smectite type show a different layer stacking sequence from illites. Random irregular stacking of mica layers with expanded layers are recognized rather than coherent stacks of mica layers. The crystals have a stepped morphology, perhaps effected by translations along the 001 plane. After reaction of the rectorite from Garland County with octadecylammonium ions, the non-expanded mica layers and the expanded smectite-like layers can be distinguished. The heterogeneity of the interlayer charges of the smectite layers is documented by the formation of alkyl double-layers with 17 Å spacings and alkyl triple-layers with 21 Å spaces in irregular sequence. The ‘rectorite’ from the Goto Mine expands nearly homogeneously in comparison with the rectorite from Garland County. After reaction with octadecylammonium ions, interplanar spacings of mostly 31 Å are observed but rarely spacings of 27 Å. The smectite layers of the corrensite from Kaubenheim are expanded by tetradecyl-ammonium ions to 18 Å spacings by formation of alkyl double-layers. A regular 1 : 1 layer structure of 14 Å chlorite layers and expanded 18 Å smectite layers with total spacing of 32 Å can be observed. Muscovite and pyrophyllite are not expandable by n-alkyl-ammonium ions within a fortnight. However, sporadic layers of celadonite crystals are expanded. Generally the 10 Å or 9·2 Å layers extend over the whole crystals of the three minerals. In celadonite crystals, disorder is caused sporadically by interrupted layers or slightly enlarged layer spacings.


2019 ◽  
pp. 297-297
Author(s):  
Yuan Zhang ◽  
Zhijun Wan ◽  
John McLennan ◽  
Bin Gu ◽  
TA Xupeng

Determining the physical and mechanical behavior of sedimentary rocks is one of the most common challenges in deep rock mass engineering. Experiments were conducted to study the physical and mechanical properties of coal measure mudstone with scanning electron microscope, x-rays diffraction and uniaxial compression testing. The results show that temperature has a significant effect on the physical and mechanical properties of coal measure mudstone. The presence of clay minerals in the evaluated mudstone contributes to the unique characteristics seen at high temperature. The mudstone experiences obvious color changes on the surface as temperature rises. This is mostly attributed to the iron-bearing clay minerals. Internal color change is caused by thermal decomposition of kerogen associated with the clay minerals. As the major clay mineral in mudstone, kaolinite undergoes significant phase changes at high temperatures, which leads to changes in mechanical properties. From 25? to 200 ?, due to the evaporation of absorbed water from the clay minerals, the strength of the mudstone increases significantly. As the temperature continues to rise beyond this, water evaporation continues and the rock strength increases gradually from 200? to 400 ?. When the temperature reaches 400 ?, this mudstone was strengthened as a result of decomposition of the kaolinite and thermal expansion of crystalline minerals. Above 600?, dehydration of the clay minerals ends while thermal cracking initiates gradually, which results in decreasing strength.


DYNA ◽  
2020 ◽  
Vol 87 (213) ◽  
pp. 116-122
Author(s):  
Iván Supelano García ◽  
Carlos Andrés Palacio Gómez ◽  
Julieth Alexandra Mejía Gómez ◽  
Carlos Arturo Parra Vargas

An adequate identification of physico-chemical properties of clay minerals is an important step to develop technological applications. In Colombia, a common issue is that the evaluation of raw materials with the preparation of the final product depend on empirical knowledge, it is common not to use any kind of technological tool to conduct any analysis. In contrast, the clay mixtures for this study were prepared and characterized by following a careful procedure to evaluate and control the qualities such as color of the final product. For this purpose, differential scanning calorimetry, magnetization, scanning electron microscopy, X-rays analysis, and positron annihilation lifetime spectroscopy techniques were applied. It is possible to conclude that the implementation scientific techniques in the sector of clay minerals may serve as a powerful tool, since preparing samples in an empirical way have been proved to lead to different qualities in the final product.


1994 ◽  
Vol 144 ◽  
pp. 82
Author(s):  
E. Hildner

AbstractOver the last twenty years, orbiting coronagraphs have vastly increased the amount of observational material for the whitelight corona. Spanning almost two solar cycles, and augmented by ground-based K-coronameter, emission-line, and eclipse observations, these data allow us to assess,inter alia: the typical and atypical behavior of the corona; how the corona evolves on time scales from minutes to a decade; and (in some respects) the relation between photospheric, coronal, and interplanetary features. This talk will review recent results on these three topics. A remark or two will attempt to relate the whitelight corona between 1.5 and 6 R⊙to the corona seen at lower altitudes in soft X-rays (e.g., with Yohkoh). The whitelight emission depends only on integrated electron density independent of temperature, whereas the soft X-ray emission depends upon the integral of electron density squared times a temperature function. The properties of coronal mass ejections (CMEs) will be reviewed briefly and their relationships to other solar and interplanetary phenomena will be noted.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


Author(s):  
R. F. Bils ◽  
W. F. Diller ◽  
F. Huth

Phosgene still plays an important role as a toxic substance in the chemical industry. Thiess (1968) recently reported observations on numerous cases of phosgene poisoning. A serious difficulty in the clinical handling of phosgene poisoning cases is a relatively long latent period, up to 12 hours, with no obvious signs of severity. At about 12 hours heavy lung edema appears suddenly, however changes can be seen in routine X-rays taken after only a few hours' exposure (Diller et al., 1969). This study was undertaken to correlate these early changes seen by the roengenologist with morphological alterations in the lungs seen in the'light and electron microscopes.Forty-two adult male and female Beagle dogs were selected for these exposure experiments. Treated animals were exposed to 94.5-107-5 ppm phosgene for 10 min. in a 15 m3 chamber. Roentgenograms were made of the thorax of each animal before and after exposure, up to 24 hrs.


Author(s):  
R. H. Duff

A material irradiated with electrons emits x-rays having energies characteristic of the elements present. Chemical combination between elements results in a small shift of the peak energies of these characteristic x-rays because chemical bonds between different elements have different energies. The energy differences of the characteristic x-rays resulting from valence electron transitions can be used to identify the chemical species present and to obtain information about the chemical bond itself. Although these peak-energy shifts have been well known for a number of years, their use for chemical-species identification in small volumes of material was not realized until the development of the electron microprobe.


Author(s):  
E. A. Kenik ◽  
J. Bentley

Cliff and Lorimer (1) have proposed a simple approach to thin foil x-ray analy sis based on the ratio of x-ray peak intensities. However, there are several experimental pitfalls which must be recognized in obtaining the desired x-ray intensities. Undesirable x-ray induced fluorescence of the specimen can result from various mechanisms and leads to x-ray intensities not characteristic of electron excitation and further results in incorrect intensity ratios.In measuring the x-ray intensity ratio for NiAl as a function of foil thickness, Zaluzec and Fraser (2) found the ratio was not constant for thicknesses where absorption could be neglected. They demonstrated that this effect originated from x-ray induced fluorescence by blocking the beam with lead foil. The primary x-rays arise in the illumination system and result in varying intensity ratios and a finite x-ray spectrum even when the specimen is not intercepting the electron beam, an ‘in-hole’ spectrum. We have developed a second technique for detecting x-ray induced fluorescence based on the magnitude of the ‘in-hole’ spectrum with different filament emission currents and condenser apertures.


Author(s):  
C.W. Akey ◽  
M. Szalay ◽  
S.J. Edelstein

Three methods of obtaining 20 Å resolution in sectioned protein crystals have recently been described. They include tannic acid fixation, low temperature embedding and grid sectioning. To be useful for 3-dimensional reconstruction thin sections must possess suitable resolution, structural fidelity and a known contrast. Tannic acid fixation appears to satisfy the above criteria based on studies of crystals of Pseudomonas cytochrome oxidase, orthorhombic beef liver catalase and beef heart F1-ATPase. In order to develop methods with general applicability, we have concentrated our efforts on a trigonal modification of catalase which routinely demonstrated a resolution of 40 Å. The catalase system is particularly useful since a comparison with the structure recently solved with x-rays will permit evaluation of the accuracy of 3-D reconstructions of sectioned crystals.Initially, we re-evaluated the packing of trigonal catalase crystals studied by Longley. Images of the (001) plane are of particular interest since they give a projection down the 31-screw axis in space group P3121. Images obtained by the method of Longley or by tannic acid fixation are negatively contrasted since control experiments with orthorhombic catalase plates yield negatively stained specimens with conditions used for the larger trigonal crystals.


Sign in / Sign up

Export Citation Format

Share Document