scholarly journals Growth of the Electrodeposited NiX2 (X= Te, Se) Thin Films

Author(s):  
T. Joseph Sahaya Anand ◽  
Rajes K. M. Rajan ◽  
Md Radzai Said ◽  
Lau Kok Tee

Thin films of nickel chalcogenide, NiX2 (X= Te, Se) have been electrosynthesized on indium-tin-oxide (ITO) coated glass substrates. The films were characterized for their structural, morphological and compositional characteristics. Consisting of transition metals and chalcogenides (S, Se and Te), they show promising solar absorbent properties such as semiconducting band gap, well adhesion to substrate and good conversion with better cost-effective. Cyclic voltammetry experiments have been done prior to electrodeposition in order to get the electrodeposition potential range where the observable reduction range is between -0.9-(-1.1) V. Their optical and semiconducting parameters were also analysed in order to determine the suitability of the thin films for photoelectrochemical (PEC) / solar cell applications. Structural analysis via X-ray diffraction (XRD) analysis reveals that the films are polycrystalline in nature. Scanning electron microscope (SEM) studies reveals that the films were adherent to the substrate with uniform and pin-hole free. Compositional analysis via energy dispersive X-ray (EDX) technique confirms the presence of Ni, Te, and Se elements in the films. The optical studies show that the films are of direct bandgap. Results on the semiconductor parameters analysis of the films showed that the nature of the Mott-Schottky plots indicates that the films obtained are of p-type material.

2011 ◽  
Vol 1328 ◽  
Author(s):  
KyoungMoo Lee ◽  
Yoshio Abe ◽  
Midori Kawamura ◽  
Hidenobu Itoh

ABSTRACTCobalt hydroxide thin films with a thickness of 100 nm were deposited onto glass, Si and indium tin oxide (ITO)-coated glass substrates by reactively sputtering a Co target in H2O gas. The substrate temperature was varied from -20 to +200°C. The EC performance of the films was investigated in 0.1 M KOH aqueous solution. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy of the samples indicated that Co3O4 films were formed at substrate temperatures above 100°C, and amorphous CoOOH films were deposited in the range from 10 to -20°C. A large change in transmittance of approximately 26% and high EC coloration efficiency of 47 cm2/C were obtained at a wavelength of 600 nm for the CoOOH thin film deposited at -20°C. The good EC performance of the CoOOH films is attributed to the low film density and amorphous structure.


2013 ◽  
Vol 690-693 ◽  
pp. 1659-1663
Author(s):  
Hai Fang Zhou ◽  
Xiao Hu Chen

The preparation and characterization of CuInS2 thin films on ITO glass substrates prepared by one-step electrodeposition have been reported. Samples were characterized using X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). The results indicate that CuInS2 is the major phase for the film deposited at -1.0 V, after annealing at 550°C in sulfur atmosphere, and the sample is Cu-rich and p-type semiconductor. Additionally, the energy band gap and carrier concentration for the sample were found to be 1.43 eV and 4.20×1017 cm−3, respectively. Furthermore, the maximum photocurrent density of the sample was found to be -1.15 mA/cm2 under 255 lx illumination, the sample shows the photo-enhancement effect.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Peijie Lin ◽  
Sile Lin ◽  
Shuying Cheng ◽  
Jing Ma ◽  
Yunfeng Lai ◽  
...  

Ag-doped In2S3(In2S3:Ag) thin films have been deposited onto glass substrates by a thermal evaporation method. Ag concentration is varied from 0 at.% to 4.78 at.%. The structural, optical, and electrical properties are characterized using X-ray diffraction (XRD), spectrophotometer, and Hall measurement system, respectively. The XRD analysis confirms the existence of In2S3and AgIn5S8phases. With the increase of the Ag concentration, the band gap of the films is decreased gradually from 2.82 eV to 2.69 eV and the resistivity drastically is decreased from ~103to5.478×10-2 Ω·cm.


Author(s):  
Marimuthu Karunakaran ◽  
S. Maheswari ◽  
Kasinathan Kasirajan ◽  
Sivaji Dinesh Raj ◽  
Rathinam Chandramohan

The growth of highly textured Mn doped Zinc oxide (ZnO) thin films with a preferred (002) orientation has been reported by employing successive ionic layer growth by adsorption reaction (SILAR) using a sodium zincate bath on glass substrates has been reported. The prepared films were characterized by X-ray diffraction (XRD), optical spectroscopy and scanning electron microscopy (SEM) measurement. The XRD analysis reveals that the films were polycrystalline. Morphology of the films was found to be uniform with smaller grains and exhibits a structure with porous. The calculated Band gap value was found to be 3.21 eV prepared at 15 mM MnSO4 concentration.


2014 ◽  
Vol 900 ◽  
pp. 397-400 ◽  
Author(s):  
Yuan Ming Zhang ◽  
Lin Chen ◽  
Hong Cheng Pan

The Ag-Ag2S-PbS thin films were co-electrodeposited on indium-tin-oxide (ITO) coated glass substrates from aqueous solutions containing 0.01 M AgNO3, 0.01 M Pb (NO3)2, 0.1 M Na2S2O3, 0.02 M ethylenediaminetetraacetic acid disodium salt, and 0.5 M Na2SO4. X-ray diffraction (XRD), scanning electron microscopy (SEM), and cyclic voltammetry (CV) were used to investigate the Ag-Ag2S-PbS thin films. The X-ray diffraction analysis demonstrated the presence of cubic structure of metallic silver, acanthite Ag2S, and cubic PbS, which is consistent with the CV analysis. The effect of different Ag+/Pb2+ratios on the morphology and composition of the Ag-Ag2S-PbS thin films were also studied.


2020 ◽  
Vol 10 (5) ◽  
pp. 6161-6164
Author(s):  
S. M. Ho

Ternary compounds such as Cu4SnS4 thin films can be deposited onto glass substrates by various deposition methods: electrodeposition, chemical bath deposition, successive ionic layer adsorption and reaction, and evaporation techniques. Cu4SnS4 films could be used in solar cell applications because of their suitable band gap and large absorption coefficient. This paper reviews previous researches on Cu4SnS4 thin films. X-ray diffraction showed that the obtained films are orthorhombic in structure and polycrystalline in nature. Cu4SnS4 films exhibited p-type electrical conductivity and indicated band gap values in the range of 0.93 to 1.84eV.


2014 ◽  
Vol 11 (3) ◽  
pp. 1257-1260
Author(s):  
Baghdad Science Journal

In this work the effect of annealing temperature on the structure and the electrical properties of Bi thin films was studied, the Bi films were deposited on glass substrates at room temperature by thermal evaporation technique with thickness (0.4 µm) and rate of deposition equal to 6.66Å/sec, all samples are annealed in a vacuum for one hour. The X-ray diffraction analysis shows that the prepared samples are polycrystalline and it exhibits hexagonal structure. The electrical properties of these films were studied with different annealing temperatures, the d.c conductivity for films decreases from 16.42 ? 10-2 at 343K to 10.11?10-2 (?.cm)-1 at 363K. The electrical activation energies Ea1 and Ea2 increase from 0.031 to 0.049eV and from 0.096 to 0. 162 eV with increasing of annealing temperature from 343K to 363K, respectively. Hall measurements showed that all the films are p-type.


2009 ◽  
Vol 1 (2) ◽  
pp. 18-20
Author(s):  
Dahyunir Dahlan

Copper oxide particles were electrodeposited onto indium tin oxide (ITO) coated glass substrates. Electrodeposition was carried out in the electrolyte containing cupric sulphate, boric acid and glucopone. Both continuous and pulse currents methods were used in the process with platinum electrode, saturated calomel electrode (SCE) and ITO electrode as the counter, reference and working electrode respectively. The deposited particles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that, using continuous current deposition, the deposited particles were mixture of Cu2O and CuO particles. By adding glucopone in the electrolyte, particles with spherical shapes were produced. Electrodeposition by using pulse current, uniform cubical shaped Cu2O particles were produced


2019 ◽  
Vol 15 (34) ◽  
pp. 1-14
Author(s):  
Bushra A. Hasan

Lead selenide PbSe thin films of different thicknesses (300, 500, and 700 nm) were deposited under vacuum using thermal evaporation method on glass substrates. X-ray diffraction measurements showed that increasing of thickness lead to well crystallize the prepared samples, such that the crystallite size increases while the dislocation density decreases with thickness increasing. A.C conductivity, dielectric constants, and loss tangent are studied as function to thickness, frequency (10kHz-10MHz) and temperatures (293K-493K). The conductivity measurements confirm confirmed that hopping is the mechanism responsible for the conduction process. Increasing of thickness decreases the thermal activation energy estimated from Arhinus equation is found to decrease with thickness increasing. The increase of thickness lead to reduce the polarizability α while the increasing of temperature lead to increase α.


Author(s):  
Minakshi Chaudhary ◽  
Yogesh Hase ◽  
Ashwini Punde ◽  
Pratibha Shinde ◽  
Ashish Waghmare ◽  
...  

: Thin films of PbS were prepared onto glass substrates by using a simple and cost effective CBD method. Influence of deposition time on structural, morphology and optical properties have been investigated systematically. The XRD analysis revealed that PbS films are polycrystalline with preferred orientation in (200) direction. Enhancement in crystallinity and PbS crystallite size has been observed with increase in deposition time. Formation of single phase PbS thin films has been further confirmed by Raman spectroscopy. The surface morphology analysis revealed the formation of prismatic and pebble-like PbS particles and with increase in deposition time these PbS particles are separated from each other without secondary growth. The data obtained from the EDX spectra shows the formation of high-quality but slightly sulfur rich PbS thin films over the entire range of deposition time studied. All films show increase in absorption with increase in deposition time and a strong absorption in the visible and sub-band gap regime of NIR range of the spectrum with red shift in band edge. The optical band gap shows decreasing trend, as deposition time increases but it is higher than the band gap of bulk PbS.


Sign in / Sign up

Export Citation Format

Share Document