scholarly journals The lncRNA FEZF1-AS1 Promotes the Progression of Colorectal Cancer Through Regulating OTX1 and Targeting miR-30a-5p

Author(s):  
Jing Li ◽  
Lian-mei Zhao ◽  
Cong Zhang ◽  
Meng Li ◽  
Bo Gao ◽  
...  

Long noncoding RNAs (lncRNAs) participate in and regulate the biological process of colorectal cancer (CRC) progression. Our previous research identified differentially expressed lncRNAs in 10 CRC tissues and 10 matched nontumor tissues by next-generation sequencing (NGS). In this study, we identified an lncRNA, FEZF1 antisense RNA 1 (FEZF1-AS1), and further explored its function and mechanism in CRC. We verified that FEZF1-AS1 is highly expressed in CRC tissues and cell lines. Through functional experiments, we found that reduced levels of FEZF1-AS1 significantly suppressed CRC cell migration, invasion, and proliferation and inhibited tumor growth in vivo. Mechanistically, we discovered that reduced levels of the lncRNA FEZF1-AS1 inhibited the activation of epithelial‐mesenchymal transition (EMT); the overexpression of orthodenticle homeobox 1 (OTX1) partially rescued the FEZF1-AS1-induced inhibition of protein expression. It indicated that FEZF1-AS1 may play a role in the occurrence and development of CRC by regulating the FEZF1-AS1/OTX1/EMT pathway. Furthermore, it was reported that FEZF1-AS1 is located in both the nucleus and cytoplasm of HCT116 cells. Dual-luciferase reporter assays verified that FEZF1-AS1 directly binds miR-30a-5p and negatively regulated each other. Further, we showed that 5′-nucleotidase ecto (NT5E) is a direct target of miR-30a-5p, and the inhibition of miR-30a-5p expression partially rescued the inhibitory effect of FEZF1-AS1 on NT5E. Our results indicated that the mechanism by which FEZF1-AS1 positively regulates the expression of NT5E is through sponging miR-30a-5p. Our study demonstrated that lncRNA FEZF1-AS1 is involved in the development of CRC and may serve as a diagnostic and therapeutic target for CRC patients.

Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5710
Author(s):  
Xiaohui Zhang ◽  
Tingyu Li ◽  
Ya-Nan Han ◽  
Minghui Ge ◽  
Pei Wang ◽  
...  

Metastasis contributes to the poor prognosis of colorectal cancer, the causative factor of which is not fully understood. Previously, we found that miR-125b (Accession number: MIMAT0000423) contributed to cetuximab resistance in colorectal cancer (CRC). In this study, we identified a novel mechanism by which miR-125b enhances metastasis by targeting cystic fibrosis transmembrane conductance regulator (CFTR) and the tight junction-associated adaptor cingulin (CGN) in CRC. We found that miR-125b expression was upregulated in primary CRC tumors and metastatic sites compared with adjacent normal tissues. Overexpression of miR-125b in CRC cells enhanced migration capacity, while knockdown of miR-125b decreased migration and invasion. RNA-sequencing (RNA-seq) and dual-luciferase reporter assays identified CFTR and CGN as the target genes of miR-125b, and the inhibitory impact of CFTR and CGN on metastasis was further verified both in vitro and in vivo. Moreover, we found that miR-125b facilitated the epithelial-mesenchymal transition (EMT) process and the expression and secretion of urokinase plasminogen activator (uPA) by targeting CFTR and enhanced the Ras Homolog Family Member A (RhoA)/Rho Kinase (ROCK) pathway activity by targeting CGN. Together, these findings suggest miR-125b as a key functional molecule in CRC and a promising biomarker for the diagnosis and treatment of CRC.


2020 ◽  
Vol 9 (2) ◽  
pp. 107-116
Author(s):  
Jiani Zhang ◽  
Lixin Ding ◽  
Gaofeng Sun ◽  
Huacheng Ning ◽  
Ruixue Huang

Abstract Radiation resistance is the most common challenge for improving radiotherapy. The mechanisms underlying the development of radioresistance remain poorly understood. This study aims to explore the role of LINC00460 in ionizing radiation-induced radioresistance as well as the mechanisms by which LINC00460 is regulated by radiation exposure. The expression of LINC00460 was measured. Cell proliferation and colony formation were measured in HCT116 cells after treatment by radiation. The development of epithelial–mesenchymal transition (EMT) was determined with or without knockdown LINC00460 expression using western blot analysis. Transcription activity was determined using a series of LINC00460-promoter luciferase reporter gene vectors. LINC00460 expression was significantly higher in HCT116 cells, relative to other cell types, with LINC00460 expression significantly affecting HCT116 cell proliferation. Suppression of LINC00460 inhibits EMT development in HCT116 cells via regulation of ZEB1 expression. Furthermore, LINC00460 expression was induced by irradiation via the activation of c-jun transcription factor-binding element located on the LINC00460 promoter. LINC00460 was shown to play a crucial role in EMT-associated progression of colorectal cancer, indicating that LINC00460 may be an indicator or new potential therapeutic target for colorectal cancer radiosensitization.


2021 ◽  
Author(s):  
Lin Fang ◽  
Mengcheng Hu ◽  
Fei Xia ◽  
wenxia Bai

Abstract Background: Long non-coding RNAs (lncRNAs) have different functions in different diseases. There is seldom research on the functions of lncRNAs in Crohn’s disease (CD). By RNA-seq technology, we identify a lncRNA associated with Crohn's disease. However, the mechanism of lncRNA regulation remains unknown. This study aimed to determine the association of LINC01272 with epithelial cell-mesenchymal transition and the underlined mechanism in CD.Methods: RNA is detected by qRT-PCR. Interaction of protein and RNA was determined by RNA binding protein immunoprecipitation. Luciferase reporter assays were used to detect the targeted miRNA of LINC01272. Tissue fibrosis was observed by Masson and HE staining. The protein expression is determined by western blot and immunofluorescence. Results: LINC01272 was highly expressed in patients with CD. Knockdown of LINC01272 inhibited TGF-β1-induced epithelial-mesenchymal transition (EMT). Additionally, LINC01272 regulated TGF-β1 induced EMT by miR-153-5p axis and knockdown of LINC01272 inhibited EMT in the CD mice in vivo. Conclusion: LINC01272 activated epithelial-mesenchymal transition through miR-153-5p in CD.


2020 ◽  
Author(s):  
Yujia Yang ◽  
Li Yuan ◽  
Bing Yang

Abstract Background: Ovarian cancer is one of the most common malignancy of the female reproductive system. Hsa‐miR‐15a‐5p (miR‐15a-5p) has been reported with tumor‐suppressing roles in various cancers. This study aims to determine the role of miR-15a-5p during the progression of ovarian cancer. Methods: We used bioinformatics, luciferase reporter assays, wound-healing, transwell invasion assays, quantitative Real-time polymerase chain reaction (qRT-PCR) and Western blot to dissect the molecular mechanism of how miR-15a-5p may cause metastasis in ovarian cancer. Results: The upregulation of miR‐15a-5p inhibited growth, migration and invasion in ovarian cancer cells. Furthermore, miR-15a-5p suppressed epithelial mesenchymal transition (EMT) of ovarian cancer cell in vitro, evidenced by expression alteration of E‐cadherin and vimentin. Proline-, glutamic acid- and leucine-rich protein 1 (PELP1) was identified as the direct target of miR-15a-5p and downregulated by miR-15a-5p. The inhibitory effect of miR-15a-5p on migration, invasion and EMT was rescued by PELP1. Additionally, downregulation of PELP1 mimicked the suppressive impact of miR-15a-5p on ovarian carcinoma cells. Conclusions: Our data indicated that miR-15a-5p inhibited migration, invasion and EMT of ovarian cancer cells by targeting PELP1, which might relate to the progression and metastasis of ovarian cancer.


2020 ◽  
Author(s):  
Junyi Ren ◽  
Xiaopeng Wang ◽  
Gang Wei ◽  
Yajing Meng

Abstract Background: Due to high potency and low toxicity, desflurane has been wildly used during surgery. Recent evidence that the use of desflurane was associated with colorectal cancer (CRC) tumor metastasis and poor prognosis raising concerns about the safety of desflurane. However, the mechanism was uncovered.Methods: CRC cells were exposed to desflurane, the changes in morphology and epithelial-mesenchymal transition (EMT)-related genes were evaluated. Transwell assay was used to study the migration and invasion effect. Xenograft was performed to study the tumor formation ability of desflurane-treated cells in vivo. Dual luciferase reporter assay was conducted to verify the target of miR-34a. Knockdown or overexpression of LOXL3 was used to investigate the mechanism of desflurane-induced EMT. The association of LOXL3 with CRC molecular subtypes and clinical relevance was studied by analysis of public datasets. Results: Exposure to desflurane induced EMT, migration, and invasion in CRC cells. Mice injected with desflurane-treated cells formed more tumors in the lungs. Downregulation of miR-34a and upregulation of LOXL3 were required for desflurane-induced EMT in CRC cells. LOXL3 was a direct target of miR-34a. Overexpression of LOXL3 rescued miR-34a-repressed EMT after exposure to desflurane. Elevated expression of LOXL3 was enriched in CMS4 and CRIS-B subtypes. Patients with high expression of LOXL3 showed more lymph node metastasis, as well as poor survival.Conclusion: Desflurane induced EMT and metastasis in CRC through deregulation of miR-34a/LOXL3 axis. Clinical miR-34a mimic or inhibitor targeting LOXL3 might have a potential protective role when CRC patients anesthetized by desflurane.


2019 ◽  
Vol 133 (10) ◽  
pp. 1197-1213 ◽  
Author(s):  
Yiting Geng ◽  
Xiao Zheng ◽  
Wenwei Hu ◽  
Qi Wang ◽  
Yanjie Xu ◽  
...  

AbstractCircular RNA (circRNA) plays an important role in the development of human malignant tumors. Recently, an increasing number of circRNAs have been identified and investigated in various tumors. However, the expression pattern and biological function of circRNAs in colorectal cancer (CRC) still remain largely unexplored. In the present study, hsa_circ_0009361 was significantly down-regulated in CRC tissues and cells. Low expression level of hsa_circ_0009361 promoted the proliferation, epithelial–mesenchymal transition (EMT), migration, and invasion of CRC cells. Hsa_circ_0009361 was identified as the sponge of miR-582 by fluorescence in situ hybridization (FISH), RNA immunoprecipitation (RIP), and luciferase reporter assays. Overexpression of hsa_circ_0009361 up-regulated the expression of adenomatous polyposis coli 2 (APC2) and inhibited the activity of the Wnt/β-catenin pathway by competitively combining with miR-582. Exogenous miR-582 and APC2 interventions could reverse the multiple biological functions mediated by hsa_circ_0009361 in CRC cells. In vivo experiments also confirmed that hsa_circ_0009361 inhibited the growth and metastasis of CRC. Hsa_circ_0009361 acted as a tumor suppressive sponge of miR-582, which could up-regulate the expression of APC2, inhibit the Wnt/β-catenin signaling, and suppress the growth and metastasis of CRC. Collectively, the hsa_circ_0009361/miR-582/APC2 network could be employed as a potential therapeutic target for CRC patients.


2021 ◽  
Author(s):  
Saisai Wang ◽  
Rushan Fei ◽  
Xijuan Xu ◽  
Jie Xu ◽  
Yuanyuan Yao ◽  
...  

Abstract Background: Colorectal cancer (CRC) is one of the most common malignances worldwide. Several studies suggest a positive association between high plasma cholesterol level and CRC. 25-hydroxycholesterol (25-HC) is enzymatically produced by cholesterol 25-hydorxylase in various organs and is involved in many processes. However, the critical role of 25-HC in the tumor growth and progression of CRC is largely unknown. Methods: CCK-8 assay, flow cytometry and Transwell migration and invasion assays were used to determine the effects of 25-HC on CRC cells proliferation, apoptosis and metastasis. Subcutaneous xenograft model and intra-splenic injection mouse model were established to investigate the effects of 25-HC on CRC in vivo. Immunohistochemistry staining was performed to determine the matrix metalloproteinases (MMPs) expressions in mice tumors and acetyl-CoA acyltransferase 1 (ACAA1) expression in human CRC tissues. The expressions of E-cadherin, N-cadherin and Vimentin were examined by immunofluorescent staining. MiR-92a-3p mimic, inhibitor and ACAA1 vector were constructed and transfected into LoVo cells. Results: 25-HC promotes CRC cells migration, invasion, and metastasis both in vitro and in vivo without affecting cells proliferation and apoptosis, accompanied by the upregulation of the expressions of MMPs and epithelial-mesenchymal transition (EMT) related markers. Mechanistically, miR-92a-3p expression is significantly elevated after 25-HC stimulation, while ACAA1 expression is down-regulated and negatively associated with tumor progression. Luciferase reporter assay confirms that miR-92a-3p could directly target ACAA1. Subsequent investigation indicates that nuclear factor (NF)-κB signaling is the downstream pathways of miR-92a-3p-ACAA1 axis in CRC cells. Conclusions: 25-HC promotes CRC cells metastasis by regulating cells migration, invasion and EMT through miR-92a-3p/ACAA1/NF-κB pathway.Trial registration: The current study was approved by the Ethics Committee of the First Affiliated Hospital, Zhejiang University on March22, 2018. The permission number was 2018-706 and 2020-1000.


2021 ◽  
Vol 22 (11) ◽  
pp. 5590
Author(s):  
Clément Veys ◽  
Abderrahim Benmoussa ◽  
Romain Contentin ◽  
Amandine Duchemin ◽  
Emilie Brotin ◽  
...  

Chondrosarcomas are malignant bone tumors. Their abundant cartilage-like extracellular matrix and their hypoxic microenvironment contribute to their resistance to chemotherapy and radiotherapy, and no effective therapy is currently available. MicroRNAs (miRNAs) may be an interesting alternative in the development of therapeutic options. Here, for the first time in chondrosarcoma cells, we carried out high-throughput functional screening using impedancemetry, and identified five miRNAs with potential antiproliferative or chemosensitive effects on SW1353 chondrosarcoma cells. The cytotoxic effects of miR-342-5p and miR-491-5p were confirmed on three chondrosarcoma cell lines, using functional validation under normoxia and hypoxia. Both miRNAs induced apoptosis and miR-342-5p also induced autophagy. Western blots and luciferase reporter assays identified for the first time Bcl-2 as a direct target of miR-342-5p, and also Bcl-xL as a direct target of both miR-342-5p and miR-491-5p in chondrosarcoma cells. MiR-491-5p also inhibited EGFR expression. Finally, only miR-342-5p induced cell death on a relevant 3D chondrosarcoma organoid model under hypoxia that mimics the in vivo microenvironment. Altogether, our results revealed the tumor suppressive activity of miR-342-5p, and to a lesser extent of miR-491-5p, on chondrosarcoma lines. Through this study, we also confirmed the potential of Bcl-2 family members as therapeutic targets in chondrosarcomas.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Lin Zhou ◽  
Qing Chen ◽  
Jie Wu ◽  
Jian Yang ◽  
Huancai Yin ◽  
...  

Although colorectal cancer (CRC) is common, there is a paucity of information regarding its molecular pathogenesis. Studies have shown that miRNAs play pivotal roles in the development and progression of CRC. There is a need to further investigate the biological functions of miRNAs in CRC. In particular, it has been reported that miR-942-5p exhibits tumor-suppressive properties. Thus, we analyzed the functional significance of miR-942-5p in CRC and the underlying molecular mechanisms. We found that miR-942-5p was downregulated in CRC tissues and cells. Cell Counting Kit-8, EdU, and colony formation assays revealed that the overexpression of miR-942-5p by mimics inhibited the proliferation of CRC cells. Use of the miR-942-5p inhibitor effectively enhanced the proliferative potential of CRC cells. Further, in vivo xenograft experiments confirmed these results. Increased expression of miR-942-5p suppressed the invasion, migration, and epithelial-mesenchymal transition of CRC cell lines, while decreased miR-942-5p expression had the opposite effect. CCBE1, a secretory molecule for lymphangiogenesis, was established as a downstream target of miR-942-5p, and its expression was inversely correlated with the expression of miR-942-5p in CRC cells. Additionally, cotransfection of the miR-942-5p inhibitor with si-CCBE1 into CRC cells reversed the effects induced by miR-942-5p overexpression. In conclusion, we confirmed that miR-942-5p exerts oncogenic actions in CRC by targeting CCBE1 and identified miR-942-5p as a potential clinical biomarker for CRC diagnosis and therapy.


Sign in / Sign up

Export Citation Format

Share Document