scholarly journals Vaccine or Life: Can We Turn the Ongoing Pandemic Into a Useful Experience?

2021 ◽  
pp. 1-3

Fundamental research, except for the medical field, is set behind by the continuing pandemic. Three main directions are shaping up in the scientists’ effort to defeat the COVID-19 virus: (i) immunization by vaccine, (ii) healing infected patients with specific medicines, or (iii) prevention of extreme symptoms via strengthening the person’s immune system, while avoiding the cytokine storm. Public opinion focused on which vaccine may be better, how long it would protect its recipient and, most importantly, when does it become available to the residents of a certain country? Does coronavirus treatment with EXO-CD24 show real promise? Under development at Tel Aviv’s Ichilov Medical Center, EXO-CD24 has been demonstrated to moderate immune response, and to help preventing cytokine storm…

2021 ◽  
Vol 12 ◽  
Author(s):  
Ruirong Chen ◽  
Zhien Lan ◽  
Jujian Ye ◽  
Limin Pang ◽  
Yi Liu ◽  
...  

The coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an ongoing major threat to global health and has posed significant challenges for the treatment of severely ill COVID-19 patients. Several studies have reported that cytokine storms are an important cause of disease deterioration and death in COVID-19 patients. Consequently, it is important to understand the specific pathophysiological processes underlying how cytokine storms promote the deterioration of COVID-19. Here, we outline the pathophysiological processes through which cytokine storms contribute to the deterioration of SARS-CoV-2 infection and describe the interaction between SARS-CoV-2 and the immune system, as well as the pathophysiology of immune response dysfunction that leads to acute respiratory distress syndrome (ARDS), multi-organ dysfunction syndrome (MODS), and coagulation impairment. Treatments based on inhibiting cytokine storm-induced deterioration and occurrence are also described.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 565
Author(s):  
Ali A. Rabaan ◽  
Shamsah H. Al-Ahmed ◽  
Mohammed A. Garout ◽  
Ayman M. Al-Qaaneh ◽  
Anupam A Sule ◽  
...  

The pathogenesis of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still not fully unraveled. Though preventive vaccines and treatment methods are out on the market, a specific cure for the disease has not been discovered. Recent investigations and research studies primarily focus on the immunopathology of the disease. A healthy immune system responds immediately after viral entry, causing immediate viral annihilation and recovery. However, an impaired immune system causes extensive systemic damage due to an unregulated immune response characterized by the hypersecretion of chemokines and cytokines. The elevated levels of cytokine or hypercytokinemia leads to acute respiratory distress syndrome (ARDS) along with multiple organ damage. Moreover, the immune response against SARS-CoV-2 has been linked with race, gender, and age; hence, this viral infection’s outcome differs among the patients. Many therapeutic strategies focusing on immunomodulation have been tested out to assuage the cytokine storm in patients with severe COVID-19. A thorough understanding of the diverse signaling pathways triggered by the SARS-CoV-2 virus is essential before contemplating relief measures. This present review explains the interrelationships of hyperinflammatory response or cytokine storm with organ damage and the disease severity. Furthermore, we have thrown light on the diverse mechanisms and risk factors that influence pathogenesis and the molecular pathways that lead to severe SARS-CoV-2 infection and multiple organ damage. Recognition of altered pathways of a dysregulated immune system can be a loophole to identify potential target markers. Identifying biomarkers in the dysregulated pathway can aid in better clinical management for patients with severe COVID-19 disease. A special focus has also been given to potent inhibitors of proinflammatory cytokines, immunomodulatory and immunotherapeutic options to ameliorate cytokine storm and inflammatory responses in patients affected with COVID-19.


Author(s):  
Jignakumari J. Gohil ◽  
Chiragkumar J. Gohil

SARS-CoV-2 virus is responsible for the COVID-19 disease in patients. Only 15-20 % of COVID-19 patients have developed severe pulmonary symptoms and illness, which are fatal to patients. Hyper-immune response to the SARS-CoV-2 virus by the host’s immune system causes the release and over production of certain kinds of inflammatory mediators and cytokines. And it results in the cytokine storm. Cytokine storm produces the hyper inflammatory reaction, which deteriorates the cells and tissue. This type of immune response is host killing and suicidal response to the SARS-CoV-2 virus by the host. This suicidal response ultimately leads to lung damage, respiratory tract pneumonia, ARDS, multi-organ failure at a later stage and ultimately death. Hence, it needs to suppress the hyper-functioning of the immune system to inhibit the cytokine release and cytokine storm. Anti-inflammatory and immuno-modulatory drugs can be repurposed to manage the cytokine storm and hyper-immune response. Inhibition and management of the host’s suicidal immune response and cytokine storm, could be life-saving and reduce the mortality rate in COVID-19 patients.


1998 ◽  
Vol 4 (1) ◽  
pp. 12-15 ◽  
Author(s):  
Hans Link

MS is associated with a cytokine storm characterized by the parallel upregulation of proinflammatory (IFN-g, TNF-a, and b, and IL-12) and immune response-down-regulating (TGF-b, IL-10) cytokines. Also IL-6 and the cytolytic molecule perforin are upregulated. Even when evaluated in individual MS patients over the disease course, no Th1/Th2 dichotomy is obvious but, instead, upregulation of Th1+Th2+Th3 cytokines simultaneously, probably reflecting the complex pathology of MS in lesion size, time and distribution in the indiviual patient. Few correlations have been observed between cytokines and clinical MS variables, though upregulation of TGF-b seems to correlate with benign course and minor disability. Both pro- and antiinflammatory cytokines are also produced by microglia and astrocytes, constituting a CNS-cytokine network that interacts with the cytokine network of the immune system. This complexity is to be kept in mind when searching for cytokine abnormalities in MS.


Author(s):  
Mattia Emanuela Ligotti ◽  
Fanny Pojero ◽  
Giulia Accardi ◽  
Anna Aiello ◽  
Calogero Caruso ◽  
...  

The outcomes of Coronavirus disease-2019 (COVID-19) vary depending on the age, health status and sex of an individual, ranging from asymptomatic to lethal. From an immunologic viewpoint, the final severe lung damage observed in COVID-19 should be caused by cytokine storm, driven mainly by interleukin-6 and other pro-inflammatory cytokines. However, which immunopathogenic status precedes this “cytokine storm” and why the male older population is more severely affected, are currently unanswered questions. The aging of the immune system, i.e., immunosenescence, closely associated with a low-grade inflammatory status called “inflammageing,” should play a key role. The remodeling of both innate and adaptive immune response observed with aging can partly explain the age gradient in severity and mortality of COVID-19. This review discusses how aging impacts the immune response to the virus, focusing on possible strategies to rejuvenate the immune system with stem cell-based therapies. Indeed, due to immunomodulatory and anti-inflammatory properties, multipotent mesenchymal stem cells (MSCs) are a worth-considering option against COVID-19 adverse outcomes.


2021 ◽  
pp. jclinpath-2020-207337
Author(s):  
Claudia Núñez-Torrón ◽  
Ana Ferrer-Gómez ◽  
Esther Moreno Moreno ◽  
Belen Pérez-Mies ◽  
Jesús Villarrubia ◽  
...  

BackgroundSecondary haemophagocytic lymphohistiocytosis (sHLH) is characterised by a hyper activation of immune system that leads to multiorgan failure. It is suggested that excessive immune response in patients with COVID-19 could mimic this syndrome. Some COVID-19 autopsy studies have revealed the presence of haemophagocytosis images in bone marrow, raising the possibility, along with HScore parameters, of sHLH.AimOur objective is to ascertain the existence of sHLH in some patients with severe COVID-19.MethodsWe report the autopsy histological findings of 16 patients with COVID-19, focusing on the presence of haemophagocytosis in bone marrow, obtained from rib squeeze and integrating these findings with HScore parameters. CD68 immunohistochemical stains were used to highlight histiocytes and haemophagocytic cells. Clinical evolution and laboratory parameters of patients were collected from electronic clinical records.ResultsEleven patients (68.7%) displayed moderate histiocytic hyperplasia with haemophagocytosis (HHH) in bone marrow, three patients (18.7%) displayed severe HHH and the remainder were mild. All HScore parameters were collected in 10 patients (62.5%). Among the patients in which all parameters were evaluable, eight patients (80%) had an HScore >169. sHLH was not clinically suspected in any case.ConclusionsOur results support the recommendation of some authors to use the HScore in patients with severe COVID-19 in order to identify those who could benefit from immunosuppressive therapies. The presence of haemophagocytosis in bone marrow tissue, despite not being a specific finding, has proved to be a very useful tool in our study to identify these patients.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Tian-Yu Lei ◽  
Ying-Ze Ye ◽  
Xi-Qun Zhu ◽  
Daniel Smerin ◽  
Li-Juan Gu ◽  
...  

AbstractThrough considerable effort in research and clinical studies, the immune system has been identified as a participant in the onset and progression of brain injury after ischaemic stroke. Due to the involvement of all types of immune cells, the roles of the immune system in stroke pathology and associated effects are complicated. Past research concentrated on the functions of monocytes and neutrophils in the pathogenesis of ischaemic stroke and tried to demonstrate the mechanisms of tissue injury and protection involving these immune cells. Within the past several years, an increasing number of studies have elucidated the vital functions of T cells in the innate and adaptive immune responses in both the acute and chronic phases of ischaemic stroke. Recently, the phenotypes of T cells with proinflammatory or anti-inflammatory function have been demonstrated in detail. T cells with distinctive phenotypes can also influence cerebral inflammation through various pathways, such as regulating the immune response, interacting with brain-resident immune cells and modulating neurogenesis and angiogenesis during different phases following stroke. In view of the limited treatment options available following stroke other than tissue plasminogen activator therapy, understanding the function of immune responses, especially T cell responses, in the post-stroke recovery period can provide a new therapeutic direction. Here, we discuss the different functions and temporal evolution of T cells with different phenotypes during the acute and chronic phases of ischaemic stroke. We suggest that modulating the balance between the proinflammatory and anti-inflammatory functions of T cells with distinct phenotypes may become a potential therapeutic approach that reduces the mortality and improves the functional outcomes and prognosis of patients suffering from ischaemic stroke.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 380
Author(s):  
Ales Macela ◽  
Klara Kubelkova

SARS-CoV-2 infection induces the production of autoantibodies, which is significantly associated with complications during hospitalization and a more severe prognosis in COVID-19 patients. Such a response of the patient’s immune system may reflect (1) the dysregulation of the immune response or (2) it may be an attempt to regulate itself in situations where the non-infectious self poses a greater threat than the infectious non-self. Of significance may be the primary virus-host cell interaction where the surface-bound ACE2 ectoenzyme plays a critical role. Here, we present a brief analysis of recent findings concerning the immune recognition of SARS-CoV-2, which, we believe, favors the second possibility as the underlying reason for the production of autoantibodies during COVID-19.


Author(s):  
Luis Sánchez-del-Campo ◽  
Román Martí-Díaz ◽  
María F. Montenegro ◽  
Rebeca González-Guerrero ◽  
Trinidad Hernández-Caselles ◽  
...  

Abstract Background The application of immune-based therapies has revolutionized cancer treatment. Yet how the immune system responds to phenotypically heterogeneous populations within tumors is poorly understood. In melanoma, one of the major determinants of phenotypic identity is the lineage survival oncogene MITF that integrates diverse microenvironmental cues to coordinate melanoma survival, senescence bypass, differentiation, proliferation, invasion, metabolism and DNA damage repair. Whether MITF also controls the immune response is unknown. Methods By using several mouse melanoma models, we examine the potential role of MITF to modulate the anti-melanoma immune response. ChIP-seq data analysis, ChIP-qPCR, CRISPR-Cas9 genome editing, and luciferase reporter assays were utilized to identify ADAM10 as a direct MITF target gene. Western blotting, confocal microscopy, flow cytometry, and natural killer (NK) cytotoxicity assays were used to determine the underlying mechanisms by which MITF-driven phenotypic plasticity modulates melanoma NK cell-mediated killing. Results Here we show that MITF regulates expression of ADAM10, a key sheddase that cleaves the MICA/B family of ligands for NK cells. By controlling melanoma recognition by NK-cells MITF thereby controls the melanoma response to the innate immune system. Consequently, while melanoma MITFLow cells can be effectively suppressed by NK-mediated killing, MITF-expressing cells escape NK cell surveillance. Conclusion Our results reveal how modulation of MITF activity can impact the anti-melanoma immune response with implications for the application of anti-melanoma immunotherapies.


Pathobiology ◽  
2021 ◽  
pp. 1-17
Author(s):  
Ana Margarida Barbosa ◽  
Alexandra Gomes-Gonçalves ◽  
António G. Castro ◽  
Egídio Torrado

The immune system plays a critical role in preventing cancer development and progression. However, the complex network of cells and soluble factor that form the tumor microenvironment (TME) can dictate the differentiation of tumor-infiltrating leukocytes and shift the antitumor immune response into promoting tumor growth. With the advent of cancer immunotherapy, there has been a reinvigorated interest in defining how the TME shapes the antitumor immune response. This interest brought to light the microbiome as a novel player in shaping cancer immunosurveillance. Indeed, accumulating evidence now suggests that the microbiome may confer susceptibility or resistance to certain cancers and may influence response to therapeutics, particularly immune checkpoint inhibitors. As we move forward into the age of precision medicine, it is vital that we define the factors that influence the interplay between the triad immune system-microbiota-cancer. This knowledge will contribute to improve the therapeutic response to current approaches and will unravel novel targets for immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document