scholarly journals Optimal management of saline water tables in irrigated regions

1987 ◽  
Vol 41 (3) ◽  
pp. 20-21
Author(s):  
Timothy K. Gates ◽  
Mark Grismer
1974 ◽  
Vol 14 (71) ◽  
pp. 811 ◽  
Author(s):  
FG Abd-El-Kaddous

In 1968 and 1969, at Kerang, Victoria, the dry matter yield of oats (Avena byzantina) grown on a sodic soil were measured under conditions of fluctuating saline (31 mmhos cm-1) water tables. In each year, a water table was established for 14 days at one of three growth stages and at depths varying from 7.5 to 90 cm. Relative to the yield obtained when the water table remained at 90 cm depth, dry matter yields were reduced by 70 per cent (1968) and 79 per cent (1969) by one temporary water table rise to a depth of 7.5 cm for 14 days. Intermediate reductions in yields occurred when the water tables rose temporarily to intermediate depths from 82.5 cm to 15 cm (7.5 cm intervals). The growth stage at which the water table rise occurred had no significant effect on yield, except in the second period in 1969 when yield was reduced during conditions of high temperature and low evaporation.


1956 ◽  
Vol 7 (1) ◽  
pp. 20 ◽  
Author(s):  
EA Jackson ◽  
G Blackburn ◽  
ARP Clarke

Measurements have been made of seasonal changes in soil salinity and soil water at Tintinara in the Coonalpyn Downs of South Australia. Five separate sites representing different soil profiles were selected for study. All soils contained saline water-tables and four of the five had varying depths of sand over finer-textured subsoils; the fifth soil was fine-textured throughout. The investigations were conducted over a 12-month period, salinity and water determinations being made every 8 weeks. Data on soil salinity are presented as: (1) Conductance of soil pastes, determined on replicates and statistically analysed. (2) Percentage of total soluble salts, derived from conductivities of 1:5 soil-water suspensions determined on composite sample. (3) Percentage of chlorides expressed as NaCl, determined on composite samples. All sets of data show that soluble salts moved upwards through the soil profile during spring and summer and down during the rainy season. Where the summer water-table was within 4 ft of the surface large amounts of saline material accumulated in the top inch of soil; in one case there was an increase of from 0.019 per cent. NaCl in winter to 3.2 per cent. in summer. Data are also presented showing that the salinity of the ground-waters increased to a maximum of 2-3.5 per cent. total salts in spring or summer. Seasonal soil water changes are recorded and discussed in relation to salinity changes. The climatic, soil, and ground-water factors influencing salt movements are discussed and the agronomic implications of seasonal salinity changes are stressed. Suggestions on the basis of the results obtained are made respecting the sampling of saline soils.


1993 ◽  
Vol 36 (3) ◽  
pp. 697-707 ◽  
Author(s):  
E. G. Kruse ◽  
D. F. Champion ◽  
D. L. Cuevas ◽  
R. E. Yoder ◽  
D. Young

2020 ◽  
Vol 24 (2 Part A) ◽  
pp. 903-914 ◽  
Author(s):  
Koichi Unami ◽  
Osama Mohawesh ◽  
Masayuki Fujihara

Water shortage and salinity are crucial factors affecting plant growth in arid and semi-arid regions, where irrigation water shortage and capillary rise from shallow saline water tables are often encountered. The objectives of this study are to construct a prototype of solar driven desalination plant in an arid area of Jordan Rift Valley, to develop a mathematical model predicting thermal dynamics in the prototype, to calibrate model parameters with measured physical parameters, and to discuss the performance of the prototype as well as its applicability to other areas under different environment. Results of measurement and numerical simulation show that the model is capable to reproduce the thermal dynamics of the desalination plant and to predict dew yield. Overall, the developed model provides a sound basis for describing and explaining the mass and energy balance mechanisms in the developed desalination plant. This study offers also a useful tool for analysis and assessment of the dew yield and thermal dynamics of such a desalination plant in general. Using the constructed prototype, performance analysis based on crop cultivation is ongoing.


2003 ◽  
Vol 51 (6) ◽  
pp. 647 ◽  
Author(s):  
Richard J. Hobbs ◽  
Viki A. Cramer ◽  
Linda J. Kristjanson

It is increasingly recognised that rising saline water tables present an unprecedented threat to both agricultural production and biodiversity conservation in the agricultural areas of Australia. In Western Australia, hydrological analysis is increasingly indicating that treatment of the problem will be difficult and costly, perhaps even impossible in some cases. Given the limited resources available for conservation management, there is a need to prioritise efforts and ensure that the level and type of management applied is both appropriate and likely to be effective. We discuss options for this in terms of ideas borrowed from healthcare provision, including triage and palliative care. We examine the range of management responses available in salinising landscapes in relation to the degree of threat, the relative value of the remnant or landscape and the likelihood of successful management intervention. While we certainly need to make a concerted effort to limit damage and loss as far as is possible, we also have to face the possibility that we cannot do this effectively everywhere, and that some areas will not be treated or treatable.


1996 ◽  
Vol 47 (1) ◽  
pp. 121 ◽  
Author(s):  
AM Boland ◽  
PH Jerie ◽  
PD Mitchell ◽  
JL Irvine ◽  
N Nardella

The effect of salinity and shallow water tables (1.4 m depth) used in combination with Regulated Deficit Irrigation (RDI) on peach trees (Prunus persica, L. Batsch) was studied over 2 years. Under RDI management a non-saline water table contributed up to 30% of water use. A lack of control of vegetative growth in the first season indicated that a shallow water table may interfere with RDI management. A decline in tree health and growth under RDI and a non-saline water table in the following season may have resulted from salinity and/or waterlogging effects. Saline irrigation under RDI management caused an additional decline in tree growth compared with RDI under non-saline conditions, and resulted in a reduction in productivity (yield and fruit size) and increased uptake of sodium (Na) and chloride (Cl) ions in various plant tissues. Similarly, a saline water table caused a decline in tree growth and fruit size in the first season and increased uptake of Na and C1 ions. For all treatments, accumulation of C1 in the leaves, Na and C1 in the fruit, Na in the bark and storage of Na in the butt wood and structural roots was demonstrated. Differences in mechanisms of transport of Na and C1 and the importance of older wood as a storage organ for ions are proposed. The potential for butt wood as a precise indicator of past salinity treatment is suggested. A combination of a shallow water table and moderate salinity environment was shown to present a potential health hazard for peach trees. The need for refinement of RDI management to incorporate leaching in the presence of saline irrigation and/or water tables is proposed. The management of drainage is also essential.


Author(s):  
John M. Wehrung ◽  
Richard J. Harniman

Water tables in aquifer regions of the southwest United States are dropping off at a rate which is greater than can be replaced by natural means. It is estimated that by 1985 wells will run dry in this region unless adequate artificial recharging can be accomplished. Recharging with surface water is limited by the plugging of permeable rock formations underground by clay particles and organic debris.A controlled study was initiated in which sand grains were used as the rock formation and water with known clay concentrations as the recharge media. The plugging mechanism was investigated by direct observation in the SEM of frozen hydrated sand samples from selected depths.


Author(s):  
Roberto González-De Zayas ◽  
Liosban Lantigua Ponce de León ◽  
Liezel Guerra Rodríguez ◽  
Felipe Matos Pupo ◽  
Leslie Hernández-Fernández

The Cenote Jennifer is an important and unique aquatic sinkhole in Cayo Coco (Jardines del Rey Tourist Destination) that has brackish to saline water. Two samplings were made in 1998 and 2009, and 4 metabolism community experiments in 2009. Some limnological parameters were measured in both samplings (temperature, salinity, pH, dissolved oxygen major ions, hydrogen sulfide, nutrients and others). Community metabolism was measured through incubated oxygen concentration in clear and dark oxygen bottles. Results showed that the sinkhole limnology depends on rainfall and light incidence year, with some stratification episodes, due to halocline or oxycline presence, rather than thermocline. The sinkhole water was oligotrophic (total nitrogen of 41.5 ± 22.2 μmol l−1 and total phosphorus of 0.3 ± 0.2 μmol l−1) and with low productivity (gross primary productivity of 63.0 mg C m−2 d−1). Anoxia and hypoxia were present at the bottom with higher levels of hydrogen sulfide, lower pH and restricted influence of the adjacent sea (2 km away). To protect the Cenote Jennifer, tourist exploitation should be avoided and more resources to ecological and morphological studies should be allocated, and eventually use this aquatic system only for specialized diving. For conservation purposes, illegal garbage disposal in the surrounding forest should end.


Author(s):  
Sergey Vasil'ev ◽  
Vyacheslav Schedrin ◽  
Aleksandra Slabunova ◽  
Vladimir Slabunov

The aim of the research is a retrospective analysis of the history and stages of development of digital land reclamation in Russia, the definition of «Digital land reclamation» and trends in its further development. In the framework of the retrospective analysis the main stages of melioration formation are determined. To achieve the maximum effect of the «digital reclamation» requires full cooperation of practical experience and scientific potential accumulated throughout the history of the reclamation complex, and the latest achievements of science and technology, which is currently possible only through the full digitalization of reclamation activities. The introduction of «digital reclamation» will achieve greater potential and effect in the modernization of the reclamation industry in the «hightech industry», through the use of innovative developments and optimal management decisions.


Sign in / Sign up

Export Citation Format

Share Document