scholarly journals Effect of Temperature and Moisture on the Tensile Properties of a TEPs-Modified Adhesive

2018 ◽  
Vol 55 (4) ◽  
pp. 478-481 ◽  
Author(s):  
Mariana D. Banea ◽  
Lucas F.m. Da Silva ◽  
Ricardo Carbas ◽  
Silvio De Barros

The main factors that affect the strength of adhesive joints are the exposure to moist environments and high and/or low temperatures. The objective of this paper is to measure the water diffusion in adhesives modified with thermally expandable particles (TEPs) and assess the joint strength of water saturated modified adhesives. Bulk specimens were used to measure the diffusion coefficient of water in a TEPs-modified adhesive. The tensile data as a function of TEPs content, moisture uptake and temperature was measured. It was found that the presence of moisture and the temperature affect the mechanical properties of TEPs-modified adhesive. Further, a scanning electron microscope (SEM) analysis was performed in order to examine the fracture surfaces of the tensile specimens tested as a function of temperature and water uptake. SEM analysis showed that the absorbed moisture and temperature change the fracture mechanisms and the morphology of the specimens.

Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 134
Author(s):  
Ana Isabel Galván ◽  
Alicia Rodríguez ◽  
Alberto Martín ◽  
Manuel Joaquín Serradilla ◽  
Ana Martínez-Dorado ◽  
...  

Dried fig is susceptible to infection by Aspergillus flavus, the major producer of the carcinogenic mycotoxins. This fruit may be contaminated by the fungus throughout the entire chain production, especially during natural sun-drying, post-harvest, industrial processing, storage, and fruit retailing. Correct management of such critical stages is necessary to prevent mould growth and mycotoxin accumulation, with temperature being one of the main factors associated with these problems. The effect of different temperatures (5, 16, 25, 30, and 37 °C) related to dried-fig processing on growth, one of the regulatory genes of aflatoxin pathway (aflR) and mycotoxin production by A. flavus, was assessed. Firstly, growth and aflatoxin production of 11 A. flavus strains were checked before selecting two strains (M30 and M144) for in-depth studies. Findings showed that there were enormous differences in aflatoxin amounts and related-gene expression between the two selected strains. Based on the results, mild temperatures, and changes in temperature during drying and storage of dried figs should be avoided. Drying should be conducted at temperatures >30 °C and close to 37 °C, while industry processing, storage, and retailing of dried figs are advisable to perform at refrigeration temperatures (<10 °C) to avoid mycotoxin production.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 288
Author(s):  
Jorge Gavara ◽  
Ana Piedra-Buena ◽  
Estrella Hernandez-Suarez ◽  
Manuel Gamez ◽  
Tomas Cabello ◽  
...  

Phthorimaea operculella is one of the most important pests causing damage to stored potatoes. In this work, the effect of temperature (at 10, 20 and 30 °C) on the predation of pest eggs by Blattisocius tarsalis was studied in the laboratory. In addition, the effect of three predatory release rates on two pest densities was studied under microcosm conditions. The results showed that B. tarsalis maintains its predatory capacity at low temperatures (10 °C), obtaining an efficiency of 49.66 ± 5.06% compared to the control. In turn, at 20 °C, a maximum efficacy of 78.17 ± 4.77% was achieved, very similar to that presented at 30 °C (75.57 ± 4.34%). Under microcosm conditions and at low pest density (10 eggs/container), the mortality due to the mite was 96.97 ± 3.03%, 81.82 ± 8.84%, and 84.85 ± 8.30%, respectively, for the three predatory release rates (5, 10 or 20 mites/container). At the high infestation level, the pest control ranged from 61.54 ± 9.21% to 92.31 ± 2.74%, depending on the predatory release rate. The results obtained show that B. tarsalis could be a relevant control agent against P. operculella under non-refrigerated potato storage conditions, as well as in the first stages of their storage under refrigerated conditions.


2019 ◽  
Vol 3 (6) ◽  
pp. 65
Author(s):  
Diana Chandra didjaja Dan Yanuar

Huge growth potential has been predicted for in-app purchases and the mobile game market but little is known about what motivates game players to make purchases in mobile game. This study aims to determine the main factors that can influence the purchase intention from players in Ragnarok mobile games. Based on previous research, this study revealed perceived value and loyalty of all players can attract purchase intention. This is a descriptive research by using questionaire which distributed to 120 respondents in Jakarta area. Data was collected by using non probability sampling method. SEM analysis were used for data analysis by using SmartPLS. From this study, it was found that variable perceived value and variable loyalty can influence purchase intention significantly. It was found that loyalty can be a mediator between perceived value and purchase intention.


2012 ◽  
Vol 134 (1) ◽  
Author(s):  
De Waele Wim ◽  
Faes Koen ◽  
Van Haver Wim

Electromagnetic punching of tubular products is considered to be a promising innovative perforating process. The required punching energy decreases when using high velocities. Also, less tools are required when compared to conventional mechanical punching. However, the increase in punching speed can involve new strain and fracture mechanisms which are characteristic of the dynamic loading. In high energy rate forming processes the effect of temperature versus time gradient on the material properties becomes important due to the heat accumulated from plastic deformation and friction. The deformation induced heating will promote strain localization in it, possibly degrade its formability and cause premature failure in the regions of high localized strain. The feasibility of the electromagnetic pulse forming process for punching holes in aluminum cylindrical specimens has been investigated on an experimental trial-and-error basis. Experiments were performed using a Pulsar system (model 50/25) with a maximum charging energy of 50 kJ and a discharge circuit frequency of 14 kHz. Microscopic and metallographic inspection of the punched workpieces, together with hardness measurements, was performed to critically evaluate the quality of the cuts. It was observed that damage occurred at part of the edge of the punched hole during some of the perforation experiments. It was evidenced that in most workpieces, especially those performed at higher charging energy levels, a considerably high temperature must have been reached in the regions near the punched hole. The aluminum in this region was assumed to have melted and resolidified. These assumptions were affirmed by the following observations. Microscopic-size precipitates present in the unaffected base metal microstructure, had completely dissolved in that region; shrinkage cavities and dendrite rich regions were clearly visible. Next to this region, a heat affected zone was present where the grain boundaries had partially melted and precipitates partially disappeared. Considerably high temperatures, in the order of 520 to 660 °C, were reached in the regions around the punched holes, leading to melting and resolidification of the material. The total width of the thermally affected regions appeared to be larger at higher energy levels. The combination of heat generated by ohmic heating and by plastic deformation in a very short time interval is the most probable cause of the high peak temperatures that have occurred during the electromagnetic punching process.


1984 ◽  
Vol 26 (3) ◽  
pp. 386-389 ◽  
Author(s):  
Linda J. Reha-Krantz ◽  
Sükran Parmaksizoglu

The effect of temperature on genetically well-defined mutational pathways was examined in the bacteriophage T4. The mutational site was a T4 rII ochre mutant which could revert to rII+ via a transversion or to the amber convertant via a transition. Temperature did not strongly affect any of the pathways examined in a wild-type background; however, increased temperature reduced the mutational activity of a mutator DNA polymerase mutant. Possible models to explain the role of temperature in mutagenesis are discussed as well as the significance of low temperatures for in vitro mutagenesis reactions.Key words: bacteriophage T4, mutator, transition, transversion, temperature effects.


2001 ◽  
Vol 281 (6) ◽  
pp. R1902-R1906 ◽  
Author(s):  
Leif Hove-Madsen ◽  
Anna Llach ◽  
Lluis Tort

The effect of temperature on sarcoplasmic reticulum (SR) Ca2+ uptake and release was measured in trout atrial myocytes using the perforated patch-clamp technique. Depolarization of the myocyte for 10 s to different membrane potentials ( V m) induced SR Ca2+ uptake. The relationship between V m and SR Ca2+ uptake was not significantly changed by lowering the experimental temperature from 21 to 7°C, and the relationship between total cytosolic Ca2+and SR Ca2+ uptake was similar at the two temperatures with a pooled Vmax = 66 amol/pF and K 0.5 = 4 amol/pF. Quantification of the Ca2+ release from the SR elicited by 10-ms depolarizations to different V m showed an increasing SR Ca2+ release at more positive V mbetween −50 and +10 mV, whereas SR Ca2+ release stagnated between +10 and +50 mV. Lowering of the temperature did not affect this relationship significantly, giving an SR Ca2+ release of 1.71 and 1.54 amol/pF at 21 and 7°C, respectively. Furthermore, clearance of the SR Ca2+ content slowed down inactivation of the L-type Ca2+ current at both temperatures (the fast time constant increased significantly from 10.4 ± 1.9 to 15.0 ± 2.0 ms at 21°C and from 38 ± 15 to 73 ± 24 ms at 7°C). Thus the SR has the capacity to remove the entire Ca2+ transient at physiologically relevant stimulation frequencies at both 21 and 7°C, although it is estimated that ∼40% of the total Ca2+ transient is liberated from and reuptaken by the SR with continuous stimulation at 0.5 Hz independently of the experimental temperature.


2006 ◽  
Vol 21 (10) ◽  
pp. 2542-2549 ◽  
Author(s):  
Li-Xia Cao ◽  
Chong-Yu Wang

The molecular dynamics method has been used to simulate mode I cracking in body-centered-cubic iron. Close attention has been paid to the process of the atomic configuration evolution of the cracks. The simulation shows that at low temperatures, partial dislocations are emitted before the initiation of crack propagation, subsequently forming the stacking faults or multilayer twins on {112} planes, and then brittle cleavage and extended dislocation nucleation are observed at the crack tip accompanied by twin extension. These results are in agreement with the experimental observation that twinning and fracture processes cooperate at low temperatures. Furthermore, an energetics analysis has been made on the deformation behavior observed at the crack tip. The effect of temperature on the fracture process is discussed. At the higher temperature, plastic deformation becomes easier, and crack blunting occurs. With increasing temperature, the fracture resistance increases, and the effect of the lattice trapping can be weakened by thermal activation.


2004 ◽  
Vol 55 (1) ◽  
pp. 39 ◽  
Author(s):  
G. B. Taylor

Seeds were removed by hand from pods of yellow serradella (Ornithopus compressus L.) cvv. Santorini and Charano and accession GRC5045-2-2 that were taken from the field on 26 March after burial treatment to initiate seed softening. Times taken for soft seeds to imbibe were determined at constant temperatures of 8�, 20�, and 30�C. Rates of moisture uptake and loss were measured in seeds held in a moist (76% RH) or dry (over sulfuric acid) atmosphere and the effects of hydration and dehydration on subsequent imbibition times determined at 20�C.Temperature had negligible effect on imbibition times in GRC5045-2-2, in which nearly all soft seeds imbibed within 24 h of wetting. Imbibition times in individual seeds of both Charano and Santorini varied from a few days to more than 200 days and were markedly reduced by increasing temperatures. Times taken to approach constant weight in the moist atmosphere were approximately 75, 165, and 430 days in GRC5045-2-2, Charano, and Santorini, respectively. By contrast the rate of moisture loss in the dry atmosphere was similar in all lines. Imbibition times in GRC5045-2-2 were little affected by state of hydration, but in both Santorini and Charano, imbibition was delayed by dehydration and accelerated by hydration.It is proposed that slow imbibition is attributable to the presence of a minute opening in the seed at an as yet unidentified site (possibly the micropyle or hilum) that restricts moisture uptake until a threshold is reached when seeds in contact with water imbibe rapidly. It is hypothesised that the moisture threshold coincides with the build up of sufficient moisture in tissues associated with the underside of the lens, to cause its rupture, thereby allowing rapid uptake of free water.


1960 ◽  
Vol 51 (3) ◽  
pp. 583-598 ◽  
Author(s):  
E. Bursell

The size-specific fat content of tsetse flies recently emerged from their puparia was determined and by comparison with the size-specific fat content of newly deposited larvae an estimate was obtained of the consumption of fat during pupal development. Experiments withGlossina morsitansWestw. were carried out at a number of different temperatures and it was found that the amount of fat consumed was least at temperatures between 22 and 24°C.Knowing the duration of the pupal period at different temperatures, the rate of fat consumption could be calculated and the logarithm of this rate was found to be linearly related to temperature. The occurrence of an optimum temperature in respect of fat consumption thus reflects the fact that at high temperatures the rate of fat consumption is greatly increased without a corresponding reduction in the duration of the pupal period, whereas at low temperatures the pupal period is very greatly lengthened without a corresponding decrease in the rate of fat consumption.


Sign in / Sign up

Export Citation Format

Share Document