scholarly journals Behavior to Dynamic Loads of Multi-layer Composite Structures

2019 ◽  
Vol 56 (2) ◽  
pp. 460-465 ◽  
Author(s):  
Victor Geanta ◽  
Ionelia Voiculescu ◽  
Tudor Chereches ◽  
Teodora Zecheru ◽  
Liviu Matache ◽  
...  

The explosive effect and high velocity penetration of the ballistic projectiles of various sizes, design and compositions, on impact with different targets (armors composed of a combination of different metals) are complex. Both practical experiments and mathematical modeling of the phenomena associated to the interaction projectile-target are required to estimate their effect or to design more efficient projectiles and armor. In this study, the basic element of the simulation model is an incendiary projectile of caliber 7.62 mm with medium piercing power, launched with a maximum speed of 750 ms-1 on the multi-material target, which contains 4 different layers assembled into a ballistic cassette made of aluminum. The purpose of this ballistic cassette is to ensure a better contact and handling of multi-layer materials. The proposed model was calculated using mathematical modeling and empirical material constants to describe the nonlinear transitory impact process. Mathematical simulation of the impact between the projectile and target during impact shows that the projectile moves sequentially through the ballistic package, causing perforation, plastic deformation and heating, the resulting fragments being then expelled into the space around the target. The model indicates that the projectile will penetrate the front aluminum plate, as well as the AlCrFeCoNi and steel plates, but will be stopped by the aluminum backing plate. The real impact tests carried out using the ballistic cassette at dynamic impact with the 7.62mm incendiary projectile confirm the model assumptions, which prove the capacity of the composite model to safely stop the projectile.

Author(s):  
Hongyi Xu ◽  
Junqi Yang ◽  
Ching-Hung Chuang ◽  
Zhenfei Zhan

The purpose of multi-layer composite structure optimization is to find the optimal composite layout, such that superior structure performances and lightweight can be achieved. However, the existing optimization methods have a low efficiency when applied to the multi-component, multi-layer composite structure. Such low efficiency is caused by the high dimensionality and the inherent shortcomings of the existing design representation methods. In this work, two composite layout representation methods are compared to better understand their impacts on optimization. The root cause of the low efficiency is identified, and its influences are also quantified using three metrics. Furthermore, a new Representation-Switch Optimization (RSO) strategy is proposed. This strategy improves the search efficiency by switching the design representation methods during the optimization process. Three benchmark studies, two mathematical examples and one real engineering example, are conducted to demonstrate the impact of design representation methods on the optimization results, as well as the effectiveness of the proposed optimization strategy.


2020 ◽  
Author(s):  
Sajjad Ahmad Afridi ◽  
Asad Shahjehan ◽  
Maqsood Haider ◽  
Dr Uzma Munawar

This study examined the impact of employee empathy on customers’ advocacy directly and indirectly through customers’ loyalty. Moreover, the interacting effect of customers’ trust was verified between the association of customers’ loyalty and advocacy. The attributes of the proposed model were examined in the context of first line employee and patients’ interactions. A total of 220 responses were collected for analysis from the private hospitals of Peshawar. The model fitness was confirmed through confirmatory factor analysis and hypotheses were examined. Findings confirmed the positive and significant impact of employee empathy on customers’ advocacy. Further, the mediating effect was examined and found that loyalty partially mediates employee empathy and customers’ advocacy. Additionally, trust was found a significant moderator between the association of customer loyalty and advocacy. Furthermore, findings revealed that trust based loyalty significantly and positively mediates employee empathy and customers’ advocacy. Findings of the present study provide understanding for the service sector, particularly in healthcare, to enhance customers’ loyalty, advocacy, and trust through service employee’s empathic aptitude. Keywords: Employee empathy, Service Eco-system, Customers’ Loyalty, Customers’ Advocacy, Trust-Based Loyalty, Healthcare, S-D Logic


2017 ◽  
Vol 921 (3) ◽  
pp. 7-13 ◽  
Author(s):  
S.V. Grishko

This paper shows that the accuracy of relative satellite measurements depend not only on the length of the baseline, as it is regulated by the rating formula of accuracy of GNSS equipment, but also on the duration of observations. As a result of the strict adjustment much redundant satellite networks with different duration of observations obtained covariance matrix of baselines, the most realistic reflecting the actual error of satellite observations. Research of forms of communication of these errors from length of the baseline and duration of its measurement is executed. A significant influence of solar activity on accuracy of satellite measurements, in general, leads to unequal similar series of measurements made at different periods, for example, in the production of monitoring activities. The model of approximation of the functional dependence of accuracy of the baseline from its length and duration of observations having good qualitative characteristics is offered. Based on the proposed model, we analyzed the dynamics of changes in measurement accuracy with an increase in observation time.


2021 ◽  
Vol 10 (s1) ◽  
Author(s):  
Pablo Marshall

Abstract Objectives: Coronavirushas had profound effects on people’s lives and the economy of many countries, generating controversy between the need to establish quarantines and other social distancing measures to protect people’s health and the need to reactivate the economy. This study proposes and applies a modification of the SIR infection model to describe the evolution of coronavirus infections and to measure the effect of quarantine on the number of people infected. Methods: Two hypotheses, not necessarily mutually exclusive, are proposed for the impact of quarantines. According to the first hypothesis, quarantine reduces the infection rate, delaying new infections over time without modifying the total number of people infected at the end of the wave. The second hypothesis establishes that quarantine reduces the population infected in the wave. The two hypotheses are tested with data for a sample of 10 districts in Santiago, Chile. Results: The results of applying the methodology show that the proposed model describes well the evolution of infections at the district level. The data shows evidence in favor of the first hypothesis, quarantine reduces the infection rate; and not in favor of the second hypothesis, that quarantine reduces the population infected. Districts of higher socio-economic levels have a lower infection rate, and quarantine is more effective. Conclusions: Quarantine, in most districts, does not reduce the total number of people infected in the wave; it only reduces the rate at which they are infected. The reduction in the infection rate avoids peaks that may collapse the health system.


2021 ◽  
Vol 10 (s1) ◽  
Author(s):  
Said Gounane ◽  
Yassir Barkouch ◽  
Abdelghafour Atlas ◽  
Mostafa Bendahmane ◽  
Fahd Karami ◽  
...  

Abstract Recently, various mathematical models have been proposed to model COVID-19 outbreak. These models are an effective tool to study the mechanisms of coronavirus spreading and to predict the future course of COVID-19 disease. They are also used to evaluate strategies to control this pandemic. Generally, SIR compartmental models are appropriate for understanding and predicting the dynamics of infectious diseases like COVID-19. The classical SIR model is initially introduced by Kermack and McKendrick (cf. (Anderson, R. M. 1991. “Discussion: the Kermack–McKendrick Epidemic Threshold Theorem.” Bulletin of Mathematical Biology 53 (1): 3–32; Kermack, W. O., and A. G. McKendrick. 1927. “A Contribution to the Mathematical Theory of Epidemics.” Proceedings of the Royal Society 115 (772): 700–21)) to describe the evolution of the susceptible, infected and recovered compartment. Focused on the impact of public policies designed to contain this pandemic, we develop a new nonlinear SIR epidemic problem modeling the spreading of coronavirus under the effect of a social distancing induced by the government measures to stop coronavirus spreading. To find the parameters adopted for each country (for e.g. Germany, Spain, Italy, France, Algeria and Morocco) we fit the proposed model with respect to the actual real data. We also evaluate the government measures in each country with respect to the evolution of the pandemic. Our numerical simulations can be used to provide an effective tool for predicting the spread of the disease.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Hiroyuki Yamada ◽  
Kohei Tateyama ◽  
Shino Naruke ◽  
Hisashi Sasaki ◽  
Shinichi Torigata ◽  
...  

AbstractThe destruction caused by ballistic ejecta from the phreatic eruptions of Mt. Ontake in 2014 and Mt. Kusatsu-Shirane (Mt. Moto-Shirane) in 2018 in Japan, which resulted in numerous casualties, highlighted the need for better evacuation facilities. In response, some mountain huts were reinforced with aramid fabric to convert them into shelters. However, a number of decisions must be made when working to increase the number of shelters, which depend on the location where they are to be built. In this study, we propose a method of using high-strength steel to reinforce wooden buildings for use as shelters. More specifically, assuming that ballistic ejecta has an impact energy of 9 kJ or more, as in previous studies, we developed a method that utilizes SUS304 and SS400 unprocessed steel plates based on existing impact test data. We found that SUS304 is particularly suitable for use as a reinforcing material because it has excellent impact energy absorption characteristics due to its high ductility as well as excellent corrosion resistance. With the aim of increasing the structural strength of steel shelters, we also conducted an impact test on a shelter fabricated from SS400 deck plates (i.e., steel with improved flexural strength provided by work-hardened trapezoidal corrugated plates). The results show that the shelter could withstand impact with an energy of 13.5 kJ (2.66 kg of simulated ballistic ejecta at 101 m/s on impact). In addition, from the result of the impact test using the roof-simulating structure, it was confirmed the impact absorption energy is further increased when artificial pumice as an additional protective layer is installed on this structure. Observations of the shelter after the impact test show that there is still some allowance for deformation caused by projectile impact, which means that the proposed steel shelter holds promise, not only structurally, but also from the aspects of transportation and assembly. Hence, the usefulness of shelters that use steel was shown experimentally. However, shelter construction should be suitable for the target environment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wilfredo Angulo ◽  
José M. Ramírez ◽  
Dany De Cecchis ◽  
Juan Primera ◽  
Henry Pacheco ◽  
...  

AbstractCOVID-19 is a highly infectious disease that emerged in China at the end of 2019. The COVID-19 pandemic is the first known pandemic caused by a coronavirus, namely, the new and emerging SARS-CoV-2 coronavirus. In the present work, we present simulations of the initial outbreak of this new coronavirus using a modified transmission rate SEIR model that takes into account the impact of government actions and the perception of risk by individuals in reaction to the proportion of fatal cases. The parameters related to these effects were fitted to the number of infected cases in the 33 provinces of China. The data for Hubei Province, the probable site of origin of the current pandemic, were considered as a particular case for the simulation and showed that the theoretical model reproduces the behavior of the data, thus indicating the importance of combining government actions and individual risk perceptions when the proportion of fatal cases is greater than $$4\%$$ 4 % . The results show that the adjusted model reproduces the behavior of the data quite well for some provinces, suggesting that the spread of the disease differs when different actions are evaluated. The proposed model could help to predict outbreaks of viruses with a biological and molecular structure similar to that of SARS-CoV-2.


2021 ◽  
Vol 11 (4) ◽  
pp. 1946
Author(s):  
Linh Thi Truc Doan ◽  
Yousef Amer ◽  
Sang-Heon Lee ◽  
Phan Nguyen Ky Phuc ◽  
Tham Thi Tran

Minimizing the impact of electronic waste (e-waste) on the environment through designing an effective reverse supply chain (RSC) is attracting the attention of both industry and academia. To obtain this goal, this study strives to develop an e-waste RSC model where the input parameters are fuzzy and risk factors are considered. The problem is then solved through crisp transformation and decision-makers are given the right to choose solutions based on their satisfaction. The result shows that the proposed model provides a practical and satisfactory solution to compromise between the level of satisfaction of constraints and the objective value. This solution includes strategic and operational decisions such as the optimal locations of facilities (i.e., disassembly, repairing, recycling facilities) and the flow quantities in the RSC.


Risks ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 44
Author(s):  
Selin Özen ◽  
Şule Şahin

Index-based hedging solutions are used to transfer the longevity risk to the capital markets. However, mismatches between the liability of the hedger and the hedging instrument cause longevity basis risk. Therefore, an appropriate two-population model to measure and assess longevity basis risk is required. In this paper, we aim to construct a two-population mortality model to provide an effective hedge against the basis risk. The reference population is modelled by using the Lee–Carter model with the renewal process and exponential jumps, and the dynamics of the book population are specified. The analysis based on the U.K. mortality data indicate that the proposed model for the reference population and the common age effect model for the book population provide a better fit compared to the other models considered in the paper. Different two-population models are used to investigate the impact of sampling risk on the index-based hedge, as well as to analyse the risk reduction regarding hedge effectiveness. The results show that the proposed model provides a significant risk reduction when mortality jumps and sampling risk are taken into account.


Sign in / Sign up

Export Citation Format

Share Document